Compact Models for Integrated Circuit Design
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronics: circuits and components > Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond
Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond


     0     
5
4
3
2
1



International Edition


X
About the Book

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.

Table of Contents:
Introduction to Compact Models. Review of Basic Device Physics. Metal-Oxide-Semiconductor System. Large Geometry MOSFET Compact Models. Compact Models for Small Geometry MOSFETs. MOSFET Capacitance Models. Compact MOSFET Models for RF Applications. Modeling Process Variability in Scaled MOSFETs. Compact Models for Ultrathin Body FETs. Beyond-CMOS Transistor Models: Tunnel FETs. Bipolar Junction Transistor Compact Models. Compact Model Library for Circuit Simulation.

About the Author :
Samar K. Saha holds a Ph.D from Gauhati University, and an M.S.EM from Stanford University. He is currently adjunct professor at Santa Clara University, technical advisor at Ultrasolar Technology, distinguished lecturer and 2016–2017 president of the IEEE Electron Devices Society, and fellow of the Institution of Engineering and Technology. He previously worked for National Semiconductor, LSI Logic, Texas Instruments, Philips Semiconductors, Silicon Storage Technology, Synopsys, DSM Solutions, Silterra USA, and SuVolta, and served as a faculty member at Southern Illinois University at Carbondale, Auburn University, University of Nevada at Las Vegas, and the University of Colorado at Colorado Springs.

Review :
"A comprehensive book deeply rooted into the physics foundation of the devices being modeled… It convinces the reader, providing confidence in the inherently quite complex equations involved in compact modeling. Moreover, the inclusion of a chapter on process variability in miniaturized devices gives the entire book a deep sense of realism." —Constantin Bulucea, IEEE Journal of Electron Devices Society (J-EDS) "A comprehensive compendium on generic MOSFET compact modeling for both students and practitioners in electronic circuit design. … This text book provides a valueable insight of generic MOSFET compact modeling and is, thus, well suited for students in electronics engineering." —Prof. Dr. Joachim Burghartz, Institute for Microelectronics Stuttgart (IMS CHIPS) "This is an excellent book written in lucid language and covers almost all the topics related to modeling of MOS system both electrostatics and transport. It is useful for both beginners and experts in the field of compact modeling. Chapter 8 on statistical variability and chapter 12 on library will be definitely useful as these chapters are not covered in other books." —Yogesh Singh Chauhan, Indian Institute of Technology (IIT) Kanpur "The writing style of the author is very visual and transforms the material from sequential mathematical derivations into a usable mental image through precise descriptions of the device physics and model limitations." —Bill Nehrer, PDF Solutions "…is extremely timely and something the community has been waiting for. This book is well written, with an in depth explanation of basic concepts as well as advanced topics. This would serve not only as an introductory text book on modeling for students but also as a good refresher book for experts working in the field. Personally, this is the book I have been waiting for, and would order one right away." —V.Ramgopal Rao, P.K.Kelkar Chair Professor, IIT Bombay, India


Best Sellers


Product Details
  • ISBN-13: 9781482240665
  • Publisher: Taylor & Francis Inc
  • Publisher Imprint: CRC Press Inc
  • Height: 234 mm
  • No of Pages: 545
  • Weight: 861 gr
  • ISBN-10: 1482240661
  • Publisher Date: 14 Aug 2015
  • Binding: Hardback
  • Language: English
  • Sub Title: Conventional Transistors and Beyond
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond
Taylor & Francis Inc -
Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!