On Sudakov's Type Decomposition of Transference Plans with Norm Costs
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > On Sudakov's Type Decomposition of Transference Plans with Norm Costs: (Memoirs of the American Mathematical Society)
On Sudakov's Type Decomposition of Transference Plans with Norm Costs: (Memoirs of the American Mathematical Society)

On Sudakov's Type Decomposition of Transference Plans with Norm Costs: (Memoirs of the American Mathematical Society)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost $|\cdot|_{D^*}$$\min \bigg\{ \int |\mathtt T(x) - x|_{D^*} d\mu(x), \ \mathtt T : \mathbb{R}^d \to \mathbb{R}^d, \ \nu = \mathtt T_\# \mu \bigg\},$ with $\mu$, $\nu$ probability measures in $\mathbb{R}^d$ and $\mu$ absolutely continuous w.r.t. $\mathcal{L}^d$. The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in $Z_\alpha\times \mathbb{R}^d$, where $\{Z_\alpha\}_{\alpha\in\mathfrak{A}} \subset \mathbb{R}^d$ are disjoint regions such that the construction of an optimal map $\mathtt T_\alpha : Z_\alpha \to \mathbb{R}^d$ is simpler than in the original problem, and then to obtain $\mathtt T$ by piecing together the maps $\mathtt T_\alpha$. When the norm $|{\cdot}|_{D^*}$ is strictly convex, the sets $Z_\alpha$ are a family of $1$-dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map $\mathtt T_\alpha$ is straightforward provided one can show that the disintegration of $\mathcal L^d$ (and thus of $\mu$) on such segments is absolutely continuous w.r.t. the $1$-dimensional Hausdorff measure. When the norm $|{\cdot}|_{D^*}$ is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions $\{Z_\alpha\}_{\alpha\in\mathfrak{A}}$ on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set $Z_\alpha$ and then in $\mathbb{R}^d$. The strategy is sufficiently powerful to be applied to other optimal transportation problems.

Table of Contents:
Introduction General notations and definitions Directed locally affine partitions on cone-Lipschitz foliations Proof of Theorem 1.1 From $\tilde{\mathbf C}^k$-fibrations to linearly ordered $\tilde{\mathbf C}^k$-Lipschitz foliations Proof of Theorems 1.2-1.6 Appendix A. Minimality of equivalence relations Chapter B. Notation Chapter C. Index of definitions Bibliography

About the Author :
Stefano Bianchini, SISSA, Trieste, Italy. Sara Daneri, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany.


Best Sellers


Product Details
  • ISBN-13: 9781470427665
  • Publisher: American Mathematical Society
  • Publisher Imprint: American Mathematical Society
  • Height: 254 mm
  • No of Pages: 112
  • Weight: 228 gr
  • ISBN-10: 1470427664
  • Publisher Date: 01 Jan 2018
  • Binding: Paperback
  • Language: English
  • Series Title: Memoirs of the American Mathematical Society
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
On Sudakov's Type Decomposition of Transference Plans with Norm Costs: (Memoirs of the American Mathematical Society)
American Mathematical Society -
On Sudakov's Type Decomposition of Transference Plans with Norm Costs: (Memoirs of the American Mathematical Society)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

On Sudakov's Type Decomposition of Transference Plans with Norm Costs: (Memoirs of the American Mathematical Society)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!