Nanoindentation of Brittle Solids
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Engineering: Mechanics of solids > Nanoindentation of Brittle Solids
Nanoindentation of Brittle Solids

Nanoindentation of Brittle Solids


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Understanding the Basics of Nanoindentation and Why It Is Important Contact damage induced brittle fracture is a common problem in the field of brittle solids. In the case of both glass and ceramics—and as it relates to both natural and artificial bio-materials—it has triggered the need for improved fabrication technology and new product development in the industry. The Nanoindentation Technique Is Especially Dedicated to Brittle Materials Nanoindentation of Brittle Solids highlights the science and technology of nanoindentation related to brittle materials, and considers the applicability of the nanoindentation technique. This book provides a thorough understanding of basic contact induced deformation mechanisms, damage initiation, and growth mechanisms. Starting from the basics of contact mechanics and nanoindentation, it considers contact mechanics, addresses contact issues in brittle solids, and explores the concepts of hardness and elastic modulus of a material. It examines a variety of brittle solids and deciphers the physics of deformation and fracture at scale lengths compatible with the microstructural unit block. Discusses nanoindentation data analysis methods and various nanoindentation techniques Includes nanoindentation results from the authors’ recent research on natural biomaterials like tooth, bone, and fish scale materials Considers the nanoindentation response if contact is made too quickly in glass Explores energy issues related to the nanoindentation of glass Describes the nanoindentation response of a coarse grain alumina Examines nanoindentation on microplasma sprayed hydroxyapatite coatings Nanoindentation of Brittle Solids provides a brief history of indentation, and explores the science and technology of nanoindentation related to brittle materials. It also offers an in-depth discussion of indentation size effect; the evolution of shear induced deformation during indentation and scratches, and includes a collection of related research works.

Table of Contents:
Section 1 Contact Mechanics. Contact Issues in Brittle Solids. Mechanics of Elastic and Elastoplastic Contacts. Section 2 Journey Towards Nanoindentation. Brief History of Indentation. Hardness and Elastic Modulus. Nanoindentation: Why at All and Where?. Nanoindentation Data Analysis Methods. Nanoindentation Techniques. Instrumental Details. Materials and Measurement Issues. Section 3 Static Contact Behavior of Glass. What If the Contact is Too Quick in Glass?. Enhancement in Nanohardness of Glass: Possible?. Energy Issues in Nanoindentation. Section 4 Dynamic Contact Behavior of Glass. Dynamic Contact Damage in Glass. Does the Speed of Dynamic Contact Matter?. Nanoindentation Inside the Scratch: What Happens?. Section 5 Static Contact Behavior of Ceramics. Nanomechanical Properties of Ceramics. Does the Contact Rate Matter for Ceramics?. Nanoscale Contact in Ceramics. Section 6 Static Behavior of Shock-Deformed Ceramics. Shock Deformation of Ceramics. Nanohardness of Alumina. Interaction of Defects with Nanoindents in Shocked Ceramics. Effect of Shock Pressure on ISE: A Comparative Study. Section 7 Nanoindentation Behavior of Ceramic-Based Composites. Nano/Micromechanical Properties of C/C and C/C-SiC Composites. Nanoindentation on Multilayered Ceramic Matrix Composites. Nanoindentation of Hydroxyapatite-Based Biocomposites. Section 8 Nanoindentation Behavior of Functional Ceramics. Nanoindentation of Silicon. Nanomechanical Behavior of ZTA. Nanoindentation Behavior of Actuator Ceramics. Nanoindentation of Magnetoelectric Multiferroic Material. Nanoindentation Behavior of Anode-Supported Solid Oxide Fuel Cell. Nanoindentation Behavior of High-Temperature Glass–Ceramic Sealants for Anode-Supported Solid Oxide Fuel Cell. Section 9 Static Contact Behavior of Ceramic Coatings. Nanoindentation on HAp Coating. Weibull Modulus of Ceramic Coating. Anisotropy in Nanohardness of Ceramic Coating. Fracture Toughness of Ceramic Coating Measured by Nanoindentation. Effect of SBF Environment on Nanomechanical and Tribological Properties of Bioceramic Coating. Nanomechanical Behavior of Ceramic Coatings Developed by Micro Arc Oxidation. Section 10 Static Contact Behavior of Ceramic Thin Films. Nanoindentation Behavior of Soft Ceramic Thin Films: Mg(OH)2. Nanoindentation Study on Hard Ceramic Thin Films: TiN. Nanoindentation Study on Sputtered Alumina Films for Spacecraft Application. Nanomechanical Behavior of Metal-Doped DLC Thin Films. Section 11 Nanoindentation Behavior on Ceramic-Based Natural Hybrid Nanocomposites. Orientational Effect in Nanohardness of Tooth Enamel. Slow or Fast Contact: Does it Matter for Enamel?. Anisotropy of Modulus in Cortical Bone. Nanoindentation of Fish Scale. Section 12 Some Unresolved Issues in Nanoindentation. Indentation Size Effect (ISE) and Reverse Indentation Size Effect (RISE) in Nanoindentation. Pop-in Issues in Nanoindentation. Effect of Loading Rate on Nanoindentation Response of Brittle Solids. Measurement of Residual Stress by Nanoindentation Technique. Reliability Issues in Nanoindentation Measurements. Substrate Effect in ThinFilm Measurements. Future Scope of Novel Nanoindentation Technique. Conclusions. Common Abbreviations. Index.

About the Author :
Dr. Arjun Dey is a scientist at the Thermal System Group of ISRO Satellite Centre, Bangalore. Dr. Dey earned a bachelor’s in mechanical engineering in 2003, followed by a master’s in materials engineering from Bengal Engineering and Science University, Shibpur, Howrah in 2007. While working at CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, he earned his doctoral degree in materials science and engineering in 2011 from the Bengal Engineering and Science University, Shibpur, Howrah. The research work of Dr. Dey culminated in more than 120 publications to his credit. Dr. Anoop Kumar Mukhopadhyay is a chief scientist and head of the Mechanical Property Evaluation Section in the Materials Characterization Division of CSIR-CGCRI, Kolkata, India. He also heads the Program Management Division and Business Development Group of CSIR-CGCRI. He obtained his bachelor’s degree with honours in physics from Kalyani University, Kalyani in 1978 followed by a master’s degree in physics from Jadavpur University, Kolkata in 1982. Dr. Mukhopadhyay has written nearly 200 publications including SCI journals, national and international conference proceedings. He has written seven patents and published three book chapters.

Review :
"This book is written in a very colloquial style and subdivided into many small sections each with a different group of authors… The emphasis is very much on the use of pointed indenters to investigate the micro and nano-mechanical properties of brittle materials. The strength of the book is the wide range of brittle materials that the book covers. It also provides the basis upon which the science of nano or instrumented indentation mechanics is based. … a convenient reference book for students and researchers in the area of brittle materials."––Michael Swain, Biomaterials, The University of Sydney, Australia "The book covers a wide range of topics and as such can attract a wide variety of the audience. … for insight of practical issues that are encountered when dealing with nanoindentation and brittle materials. It can also serve as a valuable source of references in the field."––Jiri Nemecek, Czech Technical University in Prague "… a simple but powerful resource for students, researchers and faculty who want to work in areas of emerging materials needs in fields of space, defense, biomedical, etc."—Dr. Satyam Priyadarshy, ReIgnite Strategy / Georgetown University


Best Sellers


Product Details
  • ISBN-13: 9781466596900
  • Publisher: Taylor & Francis Inc
  • Publisher Imprint: CRC Press Inc
  • Height: 234 mm
  • No of Pages: 476
  • Width: 156 mm
  • ISBN-10: 1466596902
  • Publisher Date: 25 Jun 2014
  • Binding: Hardback
  • Language: English
  • Weight: 793 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Nanoindentation of Brittle Solids
Taylor & Francis Inc -
Nanoindentation of Brittle Solids
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Nanoindentation of Brittle Solids

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!