Bayesian Phylogenetics
Home > Mathematics and Science Textbooks > Biology, life sciences > Bayesian Phylogenetics: Methods, Algorithms, and Applications(Chapman & Hall/CRC Computational Biology Series)
Bayesian Phylogenetics: Methods, Algorithms, and Applications(Chapman & Hall/CRC Computational Biology Series)

Bayesian Phylogenetics: Methods, Algorithms, and Applications(Chapman & Hall/CRC Computational Biology Series)


     0     
5
4
3
2
1



Available


X
About the Book

Offering a rich diversity of models, Bayesian phylogenetics allows evolutionary biologists, systematists, ecologists, and epidemiologists to obtain answers to very detailed phylogenetic questions. Suitable for graduate-level researchers in statistics and biology, Bayesian Phylogenetics: Methods, Algorithms, and Applications presents a snapshot of current trends in Bayesian phylogenetic research. Encouraging interdisciplinary research, this book introduces state-of-the-art phylogenetics to the Bayesian statistical community and, likewise, presents state-of-the-art Bayesian statistics to the phylogenetics community. The book emphasizes model selection, reflecting recent interest in accurately estimating marginal likelihoods. It also discusses new approaches to improve mixing in Bayesian phylogenetic analyses in which the tree topology varies. In addition, the book covers divergence time estimation, biologically realistic models, and the burgeoning interface between phylogenetics and population genetics.

Table of Contents:
Bayesian phylogenetics: methods, computational algorithms, and applications. Priors in Bayesian phylogenetics. IDR for marginal likelihood in Bayesian phylogenetics. Bayesian model selection in phylogenetics and genealogy-based population genetics. Variable tree topology stepping-stone marginal likelihood estimation. Consistency of marginal likelihood estimation when topology varies. Bayesian phylogeny analysis. Sequential Monte Carlo (SMC) for Bayesian phylogenetics. Population model comparison using multi-locus datasets. Bayesian methods in the presence of recombination. Bayesian nonparametric phylodynamics. Sampling and summary statistics of endpoint-conditioned paths in DNA sequence evolution. Bayesian inference of species divergence times. Index.

About the Author :
Ming-Hui Chen is a professor of statistics and director of the Statistical Consulting Services at the University of Connecticut. He was the recipient of the 2013 American Association of the University Professors Research Excellence Award, the 2013 College of Liberal Arts and Sciences Excellence in Research Award in the Physical Sciences Division at the University of Connecticut, and the 2011 International Chinese Statisticians Association (ICSA) Outstanding Service Award. An elected fellow of the ASA and the IMS, Dr. Chen has served on numerous professional committees, including the 2013 president of the ICSA, the 2011-2013 board of directors of the International Society for Bayesian Analysis, the 2007-2010 executive director of the ICSA, and the 2004-2006 board of directors of the ICSA. He has also served on editorial boards of Bayesian Analysis, Journal of the American Statistical Association, Journal of Computational and Graphical Statistics, Lifetime Data Analysis, Sankhya, and Statistics and Its Interface. His research interests include Bayesian statistical methodology, Bayesian computation, Bayesian phylogenetics, categorical data analysis, design of Bayesian clinical trials, DNA microarray data analysis, meta-analysis, missing data analysis, Monte Carlo methodology, prior elicitation, statistical methodology and analysis for prostate cancer data, and survival data analysis. Lynn Kuo is a professor of statistics at the University of Connecticut. An elected fellow of the ASA, she was previously a research fellow in the Statistical Survey Institute at the USDA and at the Statistical and Applied Mathematical Sciences Institute (SAMSI). Dr. Kuo received an outstanding service award from ICSA in 2013 and was the secretary and treasurer of the Section of Bayesian Statistics of the ASA in 1998-1999. She has been an associate editor of the Journal of American Statistical Association and Naval Research Logistics and has served on many review panels for the CDC, NIH, and NSF. She has published more than 80 papers in numerous journals, including Systematic Biology, Molecular Biology and Evolution, Nature Genetics, and Statistics in Biosciences. Her research areas include nonparametric Bayesian statistics, survey sampling, survival analysis, longitudinal data analysis, Bayesian phylogenetics, and "omics" data analysis. Paul O. Lewis is an associate professor of ecology and evolutionary biology and co-director of the Bioinformatics Facility in the Biotechnology/Bioservices Center at the University of Connecticut. His postdoctoral training was under Bruce S. Weir in the Department of Statistics at North Carolina State University and under David L. Swofford at the Smithsonian Institution Laboratory of Molecular Systematics. Dr. Lewis has been an associate editor of Systematic Biology and is the elected president of the Society of Systematic Biologists for 2015. His research interests include maximum likelihood and Bayesian methods in phylogenetics and the systematic evolution of green plants from green algae to angiosperms.

Review :
"… a great resource to get up to speed with the current state and future directions of many areas of research in Bayesian phylogenetics. I expect Bayesian Phylogenetics will be an important resource as Bayesian approaches to phylogenetics continue to advance and diversify. It introduces many novel methods and proofs that will be of broad interest to statisticians, and includes thorough reviews of several exciting areas of statistical phylogenetics. As a result, many of the book’s chapters will be important (and likely highly cited) references." —Systematic Biology, August 2015 "… the first book devoted solely to Bayesian methods in this field … . The affiliations of the editors of the volume reflect the strong interdisciplinary flavor of the book … . The diversity of contributing authors further reinforces this focus, with authors spanning the range from statisticians to phylogeneticists. … the volume does achieve the editors’ primary goal of bringing state-of-the-art developments at the intersection of Bayesian methodology and phylogenetic inference to the forefront in a manner in which they can be appreciated by researchers in both fields." —Journal of the American Statistical Association, June 2015 "Bayesian Phylogenetics has the distinction of being the first published text devoted solely to the Bayesian approach to phylogenetics. … a useful resource for many researchers in the field and for statisticians interested in joining the game." —International Statistical Review, 2015 "This book provides an extensive and concrete account of modern Bayesian phylogenetics … a good starting point for entering each subarea of Bayesian phylogenetics. … this book can serve as a road map for both starters and those who are already in this field. … The book is concise, and the examples accompanying each topic are clear and supported by relevant illustrations. … useful to researchers and graduate students." —Biometrics, March 2015


Best Sellers


Product Details
  • ISBN-13: 9781466500792
  • Publisher: Taylor & Francis Inc
  • Publisher Imprint: CRC Press Inc
  • Height: 234 mm
  • No of Pages: 396
  • Sub Title: Methods, Algorithms, and Applications
  • Width: 156 mm
  • ISBN-10: 1466500794
  • Publisher Date: 27 May 2014
  • Binding: Hardback
  • Language: English
  • Series Title: Chapman & Hall/CRC Computational Biology Series
  • Weight: 726 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Phylogenetics: Methods, Algorithms, and Applications(Chapman & Hall/CRC Computational Biology Series)
Taylor & Francis Inc -
Bayesian Phylogenetics: Methods, Algorithms, and Applications(Chapman & Hall/CRC Computational Biology Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Phylogenetics: Methods, Algorithms, and Applications(Chapman & Hall/CRC Computational Biology Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!