Buy Bayesian Structural Equation Modeling at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Society and Social Sciences > Psychology > Psychological methodology > Bayesian Structural Equation Modeling
Bayesian Structural Equation Modeling

Bayesian Structural Equation Modeling


     0     
5
4
3
2
1



Available


X
About the Book

This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and sample code in both Mplus and R. The companion website (www.guilford.com/depaoli-materials) supplies data sets; annotated code for implementation in both Mplus and R, so that users can work within their preferred platform; and output for all of the book’s examples.

Table of Contents:
□P□r□e□f□a□c□e□<□B□R□ □/□>□ □I□.□ □I□n□t□r□o□d□u□c□t□i□o□n□<□B□R□ □/□>□ □1□.□ □B□a□c□k□g□r□o□u□n□d□<□B□R□ □/□>□ □1□.□1□.□ □B□a□y□e□s□i□a□n□ □S□t□a□t□i□s□t□i□c□a□l□ □M□o□d□e□l□i□n□g□:□ □T□h□e□ □F□r□e□q□u□e□n□c□y□ □o□f□ □U□s□e□<□B□R□ □/□>□ □1□.□2□.□ □T□h□e□ □K□e□y□ □I□m□p□e□d□i□m□e□n□t□s□ □w□i□t□h□i□n□ □B□a□y□e□s□i□a□n□ □S□t□a□t□i□s□t□i□c□s□<□B□R□ □/□>□ □1□.□3□.□ □B□e□n□e□f□i□t□s□ □o□f□ □B□a□y□e□s□i□a□n□ □S□t□a□t□i□s□t□i□c□s□ □w□i□t□h□i□n□ □S□E□M□<□B□R□ □/□>□ □1□.□3□.□1□.□ □A□ □R□e□c□a□p□:□ □W□h□y□ □B□a□y□e□s□i□a□n□ □S□E□M□?□<□B□R□ □/□>□ □1□.□4□.□ □M□a□s□t□e□r□i□n□g□ □t□h□e□ □S□E□M□ □B□a□s□i□c□s□:□ □P□r□e□c□u□r□s□o□r□s□ □t□o□ □B□a□y□e□s□i□a□n□ □S□E□M□<□B□R□ □/□>□ □1□.□4□.□1□.□ □T□h□e□ □F□u□n□d□a□m□e□n□t□a□l□s□ □o□f□ □S□E□M□ □D□i□a□g□r□a□m□s□ □a□n□d□ □T□e□r□m□i□n□o□l□o□g□y□<□B□R□ □/□>□ □1□.□4□.□2□.□ □L□I□S□R□E□L□ □N□o□t□a□t□i□o□n□<□B□R□ □/□>□ □1□.□4□.□3□.□ □A□d□d□i□t□i□o□n□a□l□ □C□o□m□m□e□n□t□s□ □a□b□o□u□t□ □N□o□t□a□t□i□o□n□<□B□R□ □/□>□ □1□.□5□.□ □D□a□t□a□s□e□t□s□ □u□s□e□d□ □i□n□ □t□h□e□ □C□h□a□p□t□e□r□ □E□x□a□m□p□l□e□s□<□B□R□ □/□>□ □1□.□5□.□1□.□ □C□y□n□i□c□i□s□m□ □D□a□t□a□<□B□R□ □/□>□ □1□.□5□.□2□.□ □E□a□r□l□y□ □C□h□i□l□d□h□o□o□d□ □L□o□n□g□i□t□u□d□i□n□a□l□ □S□u□r□v□e□y□&□n□d□a□s□h□;□K□i□n□d□e□r□g□a□r□t□e□n□ □C□l□a□s□s□<□B□R□ □/□>□ □1□.□5□.□3□.□ □H□o□l□z□i□n□g□e□r□ □a□n□d□ □S□w□i□n□e□f□o□r□d□ □(□1□9□3□9□)□<□B□R□ □/□>□ □1□.□5□.□4□.□ □I□P□I□P□ □5□0□:□ □B□i□g□ □Q□u□e□s□t□i□o□n□n□a□i□r□e□<□B□R□ □/□>□ □1□.□5□.□5□.□ □L□a□k□a□e□v□ □A□c□a□d□e□m□i□c□ □S□t□r□e□s□s□ □R□e□s□p□o□n□s□e□ □S□c□a□l□e□<□B□R□ □/□>□ □1□.□5□.□6□.□ □P□o□l□i□t□i□c□a□l□ □D□e□m□o□c□r□a□c□y□<□B□R□ □/□>□ □1□.□5□.□7□.□ □P□r□o□g□r□a□m□ □f□o□r□ □I□n□t□e□r□n□a□t□i□o□n□a□l□ □S□t□u□d□e□n□t□ □A□s□s□e□s□s□m□e□n□t□<□B□R□ □/□>□ □1□.□5□.□8□.□ □Y□o□u□t□h□ □R□i□s□k□ □B□e□h□a□v□i□o□r□ □S□u□r□v□e□y□<□B□R□ □/□>□ □2□.□ □B□a□s□i□c□ □E□l□e□m□e□n□t□s□ □o□f□ □B□a□y□e□s□i□a□n□ □S□t□a□t□i□s□t□i□c□s□<□B□R□ □/□>□ □2□.□1□.□ □A□ □B□r□i□e□f□ □I□n□t□r□o□d□u□c□t□i□o□n□ □t□o□ □B□a□y□e□s□i□a□n□ □S□t□a□t□i□s□t□i□c□s□<□B□R□ □/□>□ □2□.□2□.□ □S□e□t□t□i□n□g□ □t□h□e□ □S□t□a□g□e□<□B□R□ □/□>□ □2□.□3□.□ □C□o□m□p□a□r□i□n□g□ □F□r□e□q□u□e□n□t□i□s□t□ □a□n□d□ □B□a□y□e□s□i□a□n□ □I□n□f□e□r□e□n□c□e□<□B□R□ □/□>□ □2□.□4□.□ □T□h□e□ □B□a□y□e□s□i□a□n□ □R□e□s□e□a□r□c□h□ □C□i□r□c□l□e□<□B□R□ □/□>□ □2□.□5□.□ □B□a□y□e□s□&□r□s□q□u□o□;□ □R□u□l□e□<□B□R□ □/□>□ □2□.□6□.□ □P□r□i□o□r□ □D□i□s□t□r□i□b□u□t□i□o□n□s□<□B□R□ □/□>□ □2□.□6□.□1□.□ □T□h□e□ □N□o□r□m□a□l□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□2□.□ □T□h□e□ □U□n□i□f□o□r□m□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□3□.□ □T□h□e□ □I□n□v□e□r□s□e□ □G□a□m□m□a□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□4□.□ □T□h□e□ □G□a□m□m□a□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□5□.□ □T□h□e□ □I□n□v□e□r□s□e□ □W□i□s□h□a□r□t□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□6□.□ □T□h□e□ □W□i□s□h□a□r□t□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□7□.□ □T□h□e□ □B□e□t□a□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□8□.□ □T□h□e□ □D□i□r□i□c□h□l□e□t□ □P□r□i□o□r□<□B□R□ □/□>□ □2□.□6□.□9□.□ □D□i□f□f□e□r□e□n□t□ □L□e□v□e□l□s□ □o□f□ □I□n□f□o□r□m□a□t□i□v□e□n□e□s□s□ □f□o□r□ □P□r□i□o□r□ □D□i□s□t□r□i□b□u□t□i□o□n□s□<□B□R□ □/□>□ □2□.□6□.□1□0□.□ □P□r□i□o□r□ □E□l□i□c□i□t□a□t□i□o□n□<□B□R□ □/□>□ □2□.□6□.□1□1□.□ □P□r□i□o□r□ □P□r□e□d□i□c□t□i□v□e□ □C□h□e□c□k□i□n□g□<□B□R□ □/□>□ □2□.□7□.□ □T□h□e□ □L□i□k□e□l□i□h□o□o□d□ □(□F□r□e□q□u□e□n□t□i□s□t□ □a□n□d□ □B□a□y□e□s□i□a□n□ □P□e□r□s□p□e□c□t□i□v□e□s□)□<□B□R□ □/□>□ □2□.□8□.□ □T□h□e□ □P□o□s□t□e□r□i□o□r□<□B□R□ □/□>□ □2□.□8□.□1□.□ □A□n□ □I□n□t□r□o□d□u□c□t□i□o□n□ □t□o□ □M□a□r□k□o□v□ □C□h□a□i□n□ □M□o□n□t□e□ □C□a□r□l□o□ □M□e□t□h□o□d□s□<□B□R□ □/□>□ □2□.□8□.□2□.□ □S□a□m□p□l□i□n□g□ □A□l□g□o□r□i□t□h□m□s□<□B□R□ □/□>□ □2□.□8□.□3□.□ □C□o□n□v□e□r□g□e□n□c□e□<□B□R□ □/□>□ □2□.□8□.□4□.□ □M□C□M□C□ □B□u□r□n□-□i□n□ □P□h□a□s□e□<□B□R□ □/□>□ □2□.□8□.□5□.□ □T□h□e□ □N□u□m□b□e□r□ □o□f□ □M□a□r□k□o□v□ □C□h□a□i□n□s□<□B□R□ □/□>□ □2□.□8□.□6□.□ □A□ □N□o□t□e□ □a□b□o□u□t□ □S□t□a□r□t□i□n□g□ □V□a□l□u□e□s□<□B□R□ □/□>□ □2□.□8□.□7□.□ □T□h□i□n□n□i□n□g□ □a□ □C□h□a□i□n□<□B□R□ □/□>□ □2□.□9□.□ □P□o□s□t□e□r□i□o□r□ □I□n□f□e□r□e□n□c□e□<□B□R□ □/□>□ □2□.□9□.□1□.□ □P□o□s□t□e□r□i□o□r□ □S□u□m□m□a□r□y□ □S□t□a□t□i□s□t□i□c□s□<□B□R□ □/□>□ □2□.□9□.□2□.□ □I□n□t□e□r□v□a□l□s□<□B□R□ □/□>□ □2□.□9□.□3□.□ □E□f□f□e□c□t□i□v□e□ □S□a□m□p□l□e□ □S□i□z□e□<□B□R□ □/□>□ □2□.□9□.□4□.□ □T□r□a□c□e□-□p□l□o□t□s□<□B□R□ □/□>□ □2□.□9□.□5□.□ □A□u□t□o□c□o□r□r□e□l□a□t□i□o□n□ □P□l□o□t□s□<□B□R□ □/□>□ □2□.□9□.□6□.□ □P□o□s□t□e□r□i□o□r□ □H□i□s□t□o□g□r□a□m□ □a□n□d□ □D□e□n□s□i□t□y□ □P□l□o□t□s□<□B□R□ □/□>□ □2□.□9□.□7□.□ □H□D□I□ □H□i□s□t□o□g□r□a□m□ □a□n□d□ □D□e□n□s□i□t□y□ □P□l□o□t□s□<□B□R□ □/□>□ □2□.□9□.□8□.□ □M□o□d□e□l□ □A□s□s□e□s□s□m□e□n□t□<□B□R□ □/□>□ □2□.□9□.□9□.□ □S□e□n□s□i□t□i□v□i□t□y□ □A□n□a□l□y□s□i□s□<□B□R□ □/□>□ □2□.□1□0□.□ □A□ □S□i□m□p□l□e□ □E□x□a□m□p□l□e□<□B□R□ □/□>□ □2□.□1□1□.□ □C□h□a□p□t□e□r□ □S□u□m□m□a□r□y□<□B□R□ □/□>□ □2□.□1□1□.□1□.□ □M□a□j□o□r□ □T□a□k□e□ □H□o□m□e□ □P□o□i□n□t□s□<□B□R□ □/□>□ □2□.□1□1□.□2□.□ □N□o□t□a□t□i□o□n□ □R□e□f□e□r□e□n□c□e□d□<□B□R□ □/□>□ □2□.□1□1□.□3□.□ □A□n□n□o□t□a□t□e□d□ □B□i□b□l□i□o□g□r□a□p□h□y□ □o□f□ □S□e□l□e□c□t□ □R□e□s□o□u□r□c□e□s□<□B□R□ □/□>□ □A□p□p□e□n□d□i□x□ □A□:□ □G□e□t□t□i□n□g□ □S□t□a□r□t□e□d□ □w□i□t□h□ □R□<□B□R□ □/□>□ □I□I□.□ □M□e□a□s□u□r□e□m□e□n□t□ □M□o□d□e□l□s□ □a□n□d□ □R□e□l□a□t□e□d□ □I□s□s□u□e□s□<□B□R□ □/□>□ □3□.□ □T□h□e□ □C□o□n□f□i□r□m□a□t□o□r□y□ □F□a□c□t□o□r□ □A□n□a□l□y□s□i□s□ □M□o□d□e□l□<□B□R□ □/□>□ □3□.□1□.□ □I□n□t□r□o□d□u□c□t□i□o□n□ □t□o□ □B□a□y□e□s□i□a□n□ □C□F□A□<□B□R□ □/□>□ □3□.□2□.□ □T□h□e□ □M□o□d□e□l□ □a□n□d□ □N□o□t□a□t□i□o□n□<□B□R□ □/□>□ □3□.□2□.□1□.□ □H□a□n□d□l□i□n□g□ □I□n□d□e□t□e□r□m□i□n□a□c□i□e□s□ □i□n□ □C□F□A□<□B□R□ □/□>□ □3□.□3□.□ □T□h□e□ □B□a□y□e□s□i□a□n□ □F□o□r□m□ □o□f□ □t□h□e□ □C□F□A□ □M□o□d□e□l□<□B□R□ □/□>□ □3□.□3□.□1□.□ □A□d□d□i□t□i□o□n□a□l□ □I□n□f□o□r□m□a□t□i□o□n□ □a□b□o□u□t□ □t□h□e□ □(□I□n□v□e□r□s□e□)□ □W□i□s□h□a□r□t□ □P□r□i□o□r□<□B□R□ □/□>□ □3□.□3□.□2□.□ □A□l□t□e□r□n□a□t□i□v□e□ □P□r□i□o□r□s□ □f□o□r□ □C□o□v□a□r□i□a□n□c□e□ □M□a□t□r□i□c□e□s□<□B□R□ □/□>□ □3□.□3□.□3□.□ □A□l□t□e□r□n□a□t□i□v□e□ □P□r□i□o□r□s□ □f□o□r□ □V□a□r□i□a□n□c□e□s□<□B□R□ □/□>□ □3□.□3□.□4□.□ □A□l□t□e□r□n□a□t□i□v□e□ □P□r□i□o□r□s□ □f□o□r□ □F□a□c□t□o□r□ □L□o□a□d□i□n□g□s□<□B□R□ □/□>□ □3□.□4□.□ □E□x□a□m□p□l□e□:□ □B□a□s□i□c□ □C□o□n□f□i□r□m□a□t□o□r□y□ □F□a□c□t□o□r□ □A□n□a□l□y□s□i□s□ □M□o□d□e□l□<□B□R□ □/□>□ □3□.□5□.□ □E□x□a□m□p□l□e□:□ □I□m□p□l□e□m□e□n□t□i□n□g□ □N□e□a□r□-□Z□e□r□o□ □P□r□i□o□r□s□ □f□o□r□ □C□r□o□s□s□-□L□o□a□d□i□n□g□s□<□B□R□ □/□>□ □3□.□6□.□ □H□o□w□ □t□o□ □W□r□i□t□e□ □u□p□ □B□a□y□e□s□i□a□n□ □C□F□A□ □R□e□s□u□l□t□s□<□B□R□ □/□>□ □3□.□6□.□1□.□ □H□y□p□o□t□h□e□t□i□c□a□l□ □D□a□t□a□ □A□n□a□l□y□s□i□s□ □P□l□a□n□<□B□R□ □/□>□ □3□.□6□.□2□.□ □H□y□p□o□t□h□e□t□i□c□a□l□ □R□e□s□u□l□t□s□ □S□e□c□t□i□o□n□<□B□R□ □/□>□ □3□.□6□.□3□.□ □D□i□s□c□u□s□s□i□o□n□ □P□o□i□n□t□s□ □R□e□l□e□v□a□n□t□ □t□o□ □t□h□e□ □A□n□a□l□y□s□i□s□<□B□R□ □/□>□ □3□.□7□.□ □C□h□a□p□t□e□r□ □S□u□m□m□a□r□y□<□B□R□ □/□>□ □3□.□7□.□1□.□ □M□a□j□o□r□ □T□a□k□e□ □H□o□m□e□ □P□o□i□n□t□s□<□B□R□ □/□>□ □3□.□7□.□2□.□ □N□o□t□a□t□i□o□n□ □R□e□f□e□r□e□n□c□e□d□<□B□R□ □/□>□ □3□.□7□.□3□.□ □A□n□n□o□t□a□t□e□d□ □B□i□b□l□i□o□g□r□a□p□h□y□ □o□f□ □S□e□l□e□c□t□ □R□e□s□o□u□r□c□e□s□<□B□R□ □/□>□ □3□.□7□.□4□.□ □E□x□a□m□p□l□e□ □C□o□d□e□ □f□o□r□ □M□<□I□>□p□l□u□s□<□/□I□>□<□B□R□ □/□>□ □3□.□7□.□5□.□ □E□x□a□m□p□l□e□ □C□o□d□e□ □f□o□r□ □R□<□B□R□ □/□>□ □4□.□ □M□u□l□t□i□p□l□e□ □G□r□o□u□p□ □M□o□d□e□l□s□<□B□R□ □/□>□ □4□.□1□.□ □A□ □B□r□i□e□f□ □I□n□t□r□o□d□u□c□t□i□o□n□ □t□o□ □M□u□l□t□i□-□G□r□o□u□p□ □M□o□d□e□l□s□<□B□R□ □/□>□ □4□.□2□.□ □I□n□t□r□o□d□u□c□t□i□o□n□ □t□o□ □t□h□e□ □M□u□l□t□i□p□l□e□-□G□r□o□u□p□ □C□F□A□ □M□o□d□e□l□ □(□w□i□t□h□ □M□e□a□n□ □D□i□f□f□e□r□e□n□c□e□s□)□<□B□R□ □/□>□ □4□.□3□.□ □T□h□e□ □M□o□d□e□l□ □a□n□d□ □N□o□t□a□t□i□o□n□<□B□R□ □/□>□ □4□.□4□.□ □T□h□e□ □B□a□y□e□s□i□a□n□ □F□o□r□m□ □o□f□ □t□h□e□ □M□u□l□t□i□p□l□e□-□G□r□o□u□p□ □C□F□A□ □M□o□d□e□l□<□B□R□ □/□>□ □4□.□5□.□ □E□x□a□m□p□l□e□:□ □U□s□i□n□g□ □a□ □M□e□a□n□ □D□i□f□f□e□r□e□n□c□e□s□,□ □M□u□l□t□i□p□l□e□-□G□r□o□u□p□ □C□F□A□ □M□o□d□e□l□ □t□o□ □A□s□s□e□s□s□ □f□o□r□ □S□c□h□o□o□l□ □D□i□f□f□e□r□e□n□c□e□s□<□B□R□ □/□>□ □4□.□6□.□ □I□n□t□r□o□d□u□c□t□i□o□n□ □t□o□ □t□h□e□ □M□I□M□I□C□ □M□o□d□e□l□<□B□R□ □/□>□ □4□.□7□.□ □T□h□e□ □M□o□d□e□l□ □a□n□d□ □N□o□t□a□t□i□o□n□<□B□R□ □/□>□ □4□.□8□.□ □T□h□e□ □B

About the Author :
Sarah Depaoli, PhD, is Associate Professor of Quantitative Methods, Measurement, and Statistics in the Department of Psychological Sciences at the University of California, Merced, where she teaches undergraduate statistics and a variety of graduate courses in quantitative methods. Her research interests include examining different facets of Bayesian estimation for latent variable, growth, and finite mixture models. She has a continued interest in the influence of prior distributions and robustness of results under different prior specifications, as well as issues tied to latent class separation. Her recent research has focused on using Bayesian semi- and non-parametric methods for obtaining proper class enumeration and assignment, examining parameterization issues within Bayesian SEM, and studying the impact of priors on longitudinal models.

Review :
"The structure of each chapter is extremely well thought-out and facilitates understanding. A brief introduction to each topic is followed by an in-depth discussion, an example, and hypothetical results and discussion. The section about how to write up findings for each SEM analysis will be extremely helpful to readers; this is something that instructors are typically left to try to come up with on their own. I would absolutely consider using this book for a class on Bayesian SEM--or a lecture on the topic in a broader SEM course--as well as for my own professional use as a reference guide."--Katerina Marcoulides, PhD, Department of Psychology, University of Minnesota Twin Cities "Depaoli has created a book that will quickly have a positive impact on researchers and students looking to expand their analytic capabilities. The text's design and writing style will engage readers with different levels of familiarity with Bayesian analysis and SEM. Instructors can flexibly change the level and amount of technical and mathematical information for different courses. I will add this text to my course to replace the hodgepodge of documents, website links, and articles needed for comprehension and usage of Bayesian SEM."--James B. Schreiber, PhD, School of Nursing, Duquesne University "Researchers interested in applying Bayesian SEM in the social sciences will benefit from reading this book or taking a course based on it. Each chapter is well organized; the introduction sections are particularly useful. All methods are illustrated by code, which is an important step toward implementing the methods and applying them to real problems."--Peng Ding, PhD, Department of Statistics, University of California, Berkeley "This book is a 'must read' for anyone who wants to do or review Bayesian SEM. It is structured well for the advanced graduate student and moderately versed researcher. The chapters are highly readable, and I really appreciate the annotated bibliography of select resources, which will be a great help to students and faculty."--Michael D. Toland, PhD, Executive Director, The Herb Innovation Center, Judith Herb College of Education, University of Toledo-


Best Sellers


Product Details
  • ISBN-13: 9781462547746
  • Publisher: Guilford Publications
  • Publisher Imprint: Guilford Press
  • Height: 254 mm
  • No of Pages: 521
  • Width: 178 mm
  • ISBN-10: 1462547745
  • Publisher Date: 26 Oct 2021
  • Binding: Hardback
  • Language: English
  • Weight: 1158 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Structural Equation Modeling
Guilford Publications -
Bayesian Structural Equation Modeling
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Structural Equation Modeling

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!