Growth Modeling
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Society and Social Sciences > Psychology > Child, developmental and lifespan psychology > Growth Modeling: Structural Equation and Multilevel Modeling Approaches(Methodology in the Social Sciences)
Growth Modeling: Structural Equation and Multilevel Modeling Approaches(Methodology in the Social Sciences)

Growth Modeling: Structural Equation and Multilevel Modeling Approaches(Methodology in the Social Sciences)


     0     
5
4
3
2
1



Available


X
About the Book

Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling. Winner--Barbara Byrne Book Award from the Society of Multivariate Experimental Psychology

Table of Contents:
I. Introduction and Organization 1. Overview, Goals of Longitudinal Research, and Historical Developments Overview Five Rationales for Longitudinal Research Historical Development of Growth Models Modeling Frameworks and Programs 2. Practical Preliminaries: Things to Do before Fitting Growth Models Data Structures Longitudinal Plots Data Screening Longitudinal Measurement Time Metrics Change Hypotheses Incomplete Data Moving Forward II. The Linear Growth Model and Its Extensions 3. Linear Growth Models Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 4. Continuous Time Metrics Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 5. Linear Growth Models with Time-Invariant Covariates Multilevel Model Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 6. Multiple-Group Growth Modeling Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 7. Growth Mixture Modeling Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Model Fit, Model Comparison, and Class Enumeration Important Considerations Moving Forward 8. Multivariate Growth Models and Dynamic Predictors Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward III. Nonlinearity in Growth Modeling 9. Introduction to Nonlinearity Organization for Nonlinear Change Models Moving Forward 10. Growth Models with Nonlinearity in Time Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 11. Growth Models with Nonlinearity in Parameters Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 12. Growth Models with Nonlinearity in Random Coefficients Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward IV. Modeling Change with Latent Entities 13. Modeling Change with Ordinal Outcomes Dichotomous Outcomes Polytomous Outcomes Illustration Multilevel Modeling Implementation Structural Equation Modeling Implementation Important Considerations Moving Forward 14. Modeling Change with Latent Variables Measured by Continuous Indicators Common-Factor Model Factorial Invariance over Time Second-Order Growth Model Illustration Structural Equation Modeling Implementation Important Considerations Moving Forward 15. Modeling Change with Latent Variables Measured by Ordinal Indicators Item Response Modeling Second-Order Growth Model Illustration Important Considerations Moving Forward V. Latent Change Scores as a Framework for Studying Change 16. Introduction to Latent Change Score Modeling General Model Specification Models of Change Illustration Structural Equation Modeling Implementation Important Considerations Moving Forward 17. Multivariate Latent Change Score Models Autoregressive Cross-Lag Model Multivariate Growth Model Multivariate Latent Change Score Model Illustration Structural Equation Modeling Implementation Important Considerations Moving Forward 18. Rate-of-Change Estimates in Nonlinear Growth Models Growth Rate Models Latent Change Score Models Illustration Multilevel Modeling Implementation Structural Equation Modeling Implementation Important Considerations Appendix A. A Brief Introduction to Multilevel Modeling Illustrative Example Multilevel Modeling and Longitudinal Data Appendix B. A Brief Introduction to Structural Equation Modeling Illustrative Example Structural Equation Modeling and Longitudinal Data References Author Index Subject Index About the Authors

About the Author :
Kevin J. Grimm, PhD, is Professor in the Department of Psychology at Arizona State University, where he teaches graduate courses on quantitative methods. His research interests include longitudinal methodology, exploratory data analysis, and data integration, especially the integration of longitudinal studies. His recent research has focused on nonlinearity in growth models, growth mixture models, extensions of latent change score models, and approaches for analyzing change with limited dependent variables. Dr. Grimm organizes the American Psychological Association’s Advanced Training Institute on Structural Equation Modeling in Longitudinal Research and has lectured at the workshop for over 15 years. Nilam Ram, PhD, is Professor in the Departments of Communication and Psychology at Stanford University. He specializes in longitudinal research methodology and lifespan development, with a focus on how multivariate time-series and growth curve modeling approaches can contribute to our understanding of behavioral change. He uses a wide variety of longitudinal models to examine changes in human behavior at multiple levels and across multiple time scales. Coupling the theory and method with data collected using mobile technologies, Dr. Ram is integrating process-oriented analytical paradigms with data visualization, gaming, experience sampling, and the delivery of individualized interventions/treatment. Ryne Estabrook, PhD, is Assistant Professor in the Department of Medical Social Sciences at Northwestern University. His research combines multivariate longitudinal methodology, open-source statistical software, and lifespan development. His methodological work pertains to developing new methods for the study of change and incorporating longitudinal and dynamic information into measurement. Dr. Estabrook is a developer of OpenMx, an open-source statistical software package for structural equation modeling and general linear algebra. He applies his methodological and statistical research to the study of lifespan development, including work on early childhood behavior and personality in late life.

Review :
"This is by far the most comprehensive, up-to-date, and ready-to-use book on growth modeling that I have ever seen. The authors have proven records in effectively teaching classes and workshops on longitudinal data analysis. This is a 'must have' for anyone who wants to develop or apply growth models. The SAS, Mplus, and OpenMx example scripts and instructions are long-needed complements to those programs' respective manuals. Coverage includes the most recent developments in growth modeling, and each chapter essentially can stand by itself, providing enough information for researchers to apply the respective models in their studies to answer more complex and interesting empirical questions. The book can be used in a range of classes either as a main text or a supplement. I will definitely recommend it to students in my Structural Equation Modeling class when I teach structural growth curve modeling."--Zhiyong Johnny Zhang, PhD, Department of Psychology, University of Notre Dame "The implementation details are superb and the level of technical detail quite stunning. It will be so helpful for longitudinal researchers to have this compendium of growth models, complete with sample code from both SEM and multilevel modeling frameworks. It is wonderful to see the item response theory and SEM frameworks so nicely integrated. The authors have hit the trifecta--pulling together multilevel modeling, SEM, and item response theory. There is truly no other book on the market that covers latent growth modeling so completely and comprehensively."--D. Betsy McCoach, PhD, Measurement, Evaluation, and Assessment Program, Neag School of Education, University of Connecticut "This is the most thorough work on this subject that I know of; the coverage of nonlinear models is among the best I have seen. The book is written at a level suitable for an advanced graduate student learning this material or an applied researcher seeking a reference on the subject. It introduces the basics, discusses the relevant model theory/specification, and presents programming code for several packages. The authors do an exceptional job of explaining the computer code and providing insight into convergence issues and how to remedy them. It is good to have this all in one place (along with the respective output) for comparative purposes."--Daniel A. Powers, PhD, Department of Sociology, University of Texas at Austin "This well-written book starts with clear statements about what research questions can be answered using growth models. Usefully, the authors include both multilevel modeling and SEM approaches, and analyze the example data within each framework using one proprietary program and one freely available R package. Viewing the detailed code and the results of each analysis gives the reader a chance to understand the strengths and weaknesses of each approach. Later chapters address such developments as nonlinear growth models and growth models for noncontinuous outcomes. Code for each variation is given, which expand the researcher's capacity to fit these complex models."--Yasuo Miyazaki, PhD, Associate Professor of Educational Research and Evaluation Program, Virginia Tech "The importance that researchers and practitioners are placing on longitudinal designs and analyses signals a prominent shift toward methods that enable a better understanding of the developmental processes thought to underlie many human traits and behaviors. This book provides the essential background on latent growth models and covers several interesting methodological extensions, including models for nonlinear change, growth mixture models, and longitudinal models for assessing change in latent variables. Practical examples are woven throughout the text, accompanied by extensive annotated code in SAS, Mplus, and R, which makes both basic and more complex models accessible. This is a wonderful resource for anyone serious about longitudinal data analysis."--Jeffrey R. Harring, PhD, Department of Human Development and Quantitative Methodology, University of Maryland "I highly recommend this book. It is a tour de force in model building with latent growth curves. The authors' use of three programming languages (Mplus, SAS, and R) is great, and they work with computer programs in an unusually careful way. The book will be of value to anyone dealing with longitudinal data."--John J. McArdle, PhD, Department of Psychology, University of Southern California -An accessible resource that provides a thorough introduction to frequently used longitudinal models….An invaluable resource for students and scholars….This book would be excellent reading material for students in various disciplines, such as psychology and education, that provide either introductory or advanced longitudinal graduate courses.--Psychometrika, 3/1/2019 "This is by far the most comprehensive, up-to-date, and ready-to-use book on growth modeling that I have ever seen. The authors have proven records in effectively teaching classes and workshops on longitudinal data analysis. This is a 'must have' for anyone who wants to develop or apply growth models. The SAS, Mplus, and OpenMx example scripts and instructions are long-needed complements to those programs' respective manuals. Coverage includes the most recent developments in growth modeling, and each chapter essentially can stand by itself, providing enough information for researchers to apply the respective models in their studies to answer more complex and interesting empirical questions. The book can be used in a range of classes either as a main text or a supplement. I will definitely recommend it to students in my Structural Equation Modeling class when I teach structural growth curve modeling."--Zhiyong Johnny Zhang, PhD, Department of Psychology, University of Notre Dame "The implementation details are superb and the level of technical detail quite stunning. It will be so helpful for longitudinal researchers to have this compendium of growth models, complete with sample code from both SEM and multilevel modeling frameworks. It is wonderful to see the item response theory and SEM frameworks so nicely integrated. The authors have hit the trifecta--pulling together multilevel modeling, SEM, and item response theory. There is truly no other book on the market that covers latent growth modeling so completely and comprehensively."--D. Betsy McCoach, PhD, Measurement, Evaluation, and Assessment Program, Neag School of Education, University of Connecticut "This is the most thorough work on this subject that I know of; the coverage of nonlinear models is among the best I have seen. The book is written at a level suitable for an advanced graduate student learning this material or an applied researcher seeking a reference on the subject. It introduces the basics, discusses the relevant model theory/specification, and presents programming code for several packages. The authors do an exceptional job of explaining the computer code and providing insight into convergence issues and how to remedy them. It is good to have this all in one place (along with the respective output) for comparative purposes."--Daniel A. Powers, PhD, Department of Sociology, University of Texas at Austin "This well-written book starts with clear statements about what research questions can be answered using growth models. Usefully, the authors include both multilevel modeling and SEM approaches, and analyze the example data within each framework using one proprietary program and one freely available R package. Viewing the detailed code and the results of each analysis gives the reader a chance to understand the strengths and weaknesses of each approach. Later chapters address such developments as nonlinear growth models and growth models for noncontinuous outcomes. Code for each variation is given, which expand the researcher's capacity to fit these complex models."--Yasuo Miyazaki, PhD, Associate Professor of Educational Research and Evaluation Program, Virginia Tech "The importance that researchers and practitioners are placing on longitudinal designs and analyses signals a prominent shift toward methods that enable a better understanding of the developmental processes thought to underlie many human traits and behaviors. This book provides the essential background on latent growth models and covers several interesting methodological extensions, including models for nonlinear change, growth mixture models, and longitudinal models for assessing change in latent variables. Practical examples are woven throughout the text, accompanied by extensive annotated code in SAS, Mplus, and R, which makes both basic and more complex models accessible. This is a wonderful resource for anyone serious about longitudinal data analysis."--Jeffrey R. Harring, PhD, Department of Human Development and Quantitative Methodology, University of Maryland "I highly recommend this book. It is a tour de force in model building with latent growth curves. The authors' use of three programming languages (Mplus, SAS, and R) is great, and they work with computer programs in an unusually careful way. The book will be of value to anyone dealing with longitudinal data."--John J. McArdle, PhD, Department of Psychology, University of Southern California -An accessible resource that provides a thorough introduction to frequently used longitudinal models….An invaluable resource for students and scholars….This book would be excellent reading material for students in various disciplines, such as psychology and education, that provide either introductory or advanced longitudinal graduate courses.--Psychometrika, 3/1/2019


Best Sellers


Product Details
  • ISBN-13: 9781462526062
  • Publisher: Guilford Publications
  • Publisher Imprint: Guilford Press
  • Height: 254 mm
  • No of Pages: 537
  • Series Title: Methodology in the Social Sciences
  • Weight: 1123 gr
  • ISBN-10: 1462526063
  • Publisher Date: 02 Nov 2016
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Sub Title: Structural Equation and Multilevel Modeling Approaches
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Growth Modeling: Structural Equation and Multilevel Modeling Approaches(Methodology in the Social Sciences)
Guilford Publications -
Growth Modeling: Structural Equation and Multilevel Modeling Approaches(Methodology in the Social Sciences)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Growth Modeling: Structural Equation and Multilevel Modeling Approaches(Methodology in the Social Sciences)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!