Field Theoretic Method in Phase Transformations
Home > Mathematics and Science Textbooks > Physics > Materials / States of matter > Field Theoretic Method in Phase Transformations: (840 Lecture Notes in Physics)
Field Theoretic Method in Phase Transformations: (840 Lecture Notes in Physics)

Field Theoretic Method in Phase Transformations: (840 Lecture Notes in Physics)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The main subject of the book is the continuum, field theoretic method of study of phase transformations in material systems. The method, also known as "phase field", allows one to analyze different stages of transformations on the unified platform. It has received significant attention in the materials science community recently due to many successes in solving or illuminating important problems. The book will address fundamentals of the method starting from the classical theories of phase transitions, the most important theoretical and computational results, and some of the most advanced recent applications.

Table of Contents:
1: Introduction.- What Is This Book About?.- Who Is This Book For?.- Historical Note.- Nomenclature.- Acknowledgements.- 2: Landau Theory of Phase Transitions.- 2.1 A Phase and Phase Transition.- 2.2 Phase Transition as Symmetry Change: the Order Parameter.- 2.3 Phase Transition as a Catastrophe: the Free Energy.- 2.4 Ehrenfest Classification.- 2.5 The Tangential Potential.- 2.6 Phase Diagrams and Measurable Quantities.- 2.6.1 First-Order Transitions.- 2.6.2 Second-Order Transitions.- 2.7 Effect of External Field on Phase Transition.- 3: Heterogeneous Equilibrium Systems.- 3.1 Theory of Capillarity.- 3.2 The Free Energy.- 3.3 Equilibrium States.- 3.4 One-Dimensional Solutions of Equilibrium Equation.- 3.4.1 Classification.- 3.4.2 Type-e1 States: Bifurcation off the Transition State.- 3.4.3 Type-e3 States: Approach to Thermodynamic Limit.- 3.4.4 Type-e4 State: Plane Interface.- 3.4.5 Interfacial Properties: Gibbs Adsorption Equation.- 3.4.6 Type-n4 State: Critical Plate—Instanton.- 3.5 Free Energy Landscape.- 3.6 Multidimensional Equilibrium States.- 3.6.1 Quasi One-Dimensional States: Drumhead (Sharp Interface) Approximation.- 3.6.2 Critical Droplet—3d Spherically-Symmetric Instanton.- 3.6.3 Small Deviations From Homogeneous Equilibrium States: Fourier Method.- 3.7 Thermodynamic Stability of States: Local versus Global.- 3.7.1 Type-e4 State: Plane Interface.- 3.7.2 General Type-e and Type-n States.- 3.7.3 3d Spherically-Symmetric Instanton.- 3.8 Gradients of Conjugate Fields.- 4: Dynamics of Homogeneous Systems.- 4.1 Evolution Equation: The Linear Ansatz.- 4.2 Solutions of the Linear-Ansatz Dynamic Equation.- 4.2.1 Evolution of Small Disturbances.- 4.2.2 More complicated types of OPs.- 4.2.3 Critical Slowing Down.- 4.2.4 Non-Linear Evolution.- 4.3 Beyond the Linear Ansatz.- 4.4 Relaxation with Memory.- 4.5 Other Forces.- 5: Evolution of Heterogeneous Systems.- 5.1 Time-Dependent Ginzburg-Landau Evolution Equation.- 5.2 Motion of Plane Interfaces.- 5.3 Dynamic Stability of Equilibrium States .- 5.3.1 Homogeneous Equilibrium States.- 5.3.2 Heterogeneous Equilibrium States.- 5.3.3 Morphological Stability of Moving Plane Interface.- 5.4 Motion of Curved Interfaces: Drumhead (Sharp Interface) Approximation.- 5.4.1 Non-Equilibrium Interface Energy.- 5.4.2 Evolution of a Spherical Droplet.- 5.5 Dynamics of Domain Growth.- 6: Thermo-Mechanical Analogy.- 7: Thermodynamic Fluctuations.- 7.1 Classical Nucleation Theory.- 7.2 Free Energy of Equilibrium System with Fluctuations.- 7.3 Levanyuk-Ginsburg Criterion.- 7.4 Dynamics of Fluctuating Systems: Langevin Force.- Evolution of the Structure Factor.-  Drumhead Approximation of the Evolution Equation.- Evolution of the Interfacial Structure Factor.- Nucleation in the Drumhead Approximation.- 8: More Complicated Systems.- 8.1 Conservative Order Parameter: Theory of Spinodal Decomposition.- 8.1.1 Thermodynamic Equilibrium in Binary Systems.- 8.1.2 Equilibrium in Inhomogeneous Systems.- 8.1.3 Dynamics of Decomposition in Binary Systems.- 8.1.4 Evolution of Small Disturbances.- 8.1.5 Role of fluctuations.- 8.2 Complex Order Parameter: Ginzburg-Landau’s Theory of Superconductivity.- Order Parameter and Free Energy.- Equilibrium Equations.- 8.2.3 Surface Tension of the Superconducting/Normal Phase Interface.- Multicomponent Order Parameter: Crystallographic Phase Transitions.- Invariance to Symmetry Group.- Inhomogeneous Variations.- 8.3.3 Equilibrium States.- 8.4 Memory Effects: Non-Markovian Systems.- 8.5 “Mechanical” Order Parameter.- 9: Thermal Effects: Coupling to “Hydrodynamic” Variables.- 9.1 Equilibrium States of a Closed (Adiabatic) System.- 9.1.1 Type-E1 States.- Type-E2 States.- Generalized Heat Equation.- Emergence of a New Phase.- Motion of Interfaces: Drumhead Approximation.- 9.4.1 Generalized Stefan Heat-Balance Equation.- 9.4.2 Generalized Kinetic Equation.- 9.4.3 Gibbs-Duhem Force.- 9.4.4 Inter-Phase Boundary Motion: Heat Trapping.- 9.4.5 APB Motion: Thermal Drag.- Length and Energy Scales.- Pattern Formation.- 1-Dimensional Transformation.- 2-Dimensional Transformation.- 10: Transformations in Real Materials.- 10.1 Parameters of FTM.- 10.2 Boundaries of Applicability of FTM.- 11: Extensions of the Method.- 11.1 Cellular Automata Method: “Poor Man’s Phase Field”.- 11.2 Continuum Models of Grain Growth.- Multiphase Field Models.- Orientational Order Parameter Field Models.- Phase-Field Crystal.- 11.3 Epilog: Successes Stories.- Appendix A: Coarse-Graining Procedure.- Appendix B: Calculus of Variations and Functional Derivative.- Appendix C: Orthogonal Curvilinear Coordinates.- Appendix D: Lagrangian Field Theory.- Appendix E: Eigenfunctions and Eigenvalues of The Schrödinger Equation and Sturm’s Comparison Theorem.- Appendix F: Fourier and Legendre Transforms.- Appendix G: Stochastic Processes.- The Master and Fokker-Plank Equations.- Decomposition of Unstable States.- Diffusion in Bistable Potential.- Autocorrelation Function.- The Langevin Approach.- Appendix H: Two-phase equilibrium in a closed binary system.- Appendix I: The Stefan Problem.- Appendix K: “On the Theory of Adsorption of Sound in Liquids” By L. I. Mandelshtam and M. A. Leontovich.- Index.

Review :
From the reviews: “This book is a thorough presentation of the field theoretic method of study of phase transformations in material systems. … The book is well written and quite appropriate as a reference on the subject, but can also be used as a textbook for an audience interested in the physical aspects of the theory. It should also be useful to mathematicians interested in the analysis and numerics of phase transitions who want to deepen their knowledge on the physical origins of the problems they work on.” (Apostolos Damialis, Mathematical Reviews, July, 2013) “The author discusses the field theoretic method in phase transitions. Phase transitions are significant changes in a system’s properties and symmetry, which happen as a result of changes of external conditions … . This book is aimed at researches who are interested in all aspects of phase transformations, especially for practitioners who are involved in theoretical studies or computer simulations of the phenomena. This book can be used as a textbook for a graduate or upper-level undergraduate course in the physics of phase transitions.” (Nasir N. Ganikhodjaev, Zentralblatt MATH, Vol. 1252, 2012)


Best Sellers


Product Details
  • ISBN-13: 9781461414865
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 235 mm
  • No of Pages: 344
  • Series Title: 840 Lecture Notes in Physics
  • Width: 155 mm
  • ISBN-10: 1461414865
  • Publisher Date: 20 Apr 2012
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 545 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Field Theoretic Method in Phase Transformations: (840 Lecture Notes in Physics)
Springer-Verlag New York Inc. -
Field Theoretic Method in Phase Transformations: (840 Lecture Notes in Physics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Field Theoretic Method in Phase Transformations: (840 Lecture Notes in Physics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!