Monte Carlo Methods in Bayesian Computation
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Monte Carlo Methods in Bayesian Computation: (Springer Series in Statistics)
Monte Carlo Methods in Bayesian Computation: (Springer Series in Statistics)

Monte Carlo Methods in Bayesian Computation: (Springer Series in Statistics)


     0     
5
4
3
2
1



International Edition


X
About the Book

Bayesian statistics is one of the active research areas in statistics. This book provides the theoretical background behind the most important recent development, Markov chain Monte Carlos methods.

Table of Contents:
1 Introduction.- 1.1 Aims.- 1.2 Outline.- 1.3 Motivating Examples.- 1.4 The Bayesian Paradigm.- Exercises.- 2 Markov Chain Monte Carlo Sampling.- 2.1 Gibbs Sampler.- 2.2 Metropolis-Hastings Algorithm.- 2.3 Hit-and-Run Algorithm.- 2.4 Multiple-Try Metropolis Algorithm.- 2.5 Grouping, Collapsing, and Reparameterizations.- 2.6 Acceleration Algorithms for MCMC Sampling.- 2.7 Dynamic Weighting Algorithm.- 2.8 Toward “Black-Box” Sampling.- 2.9 Convergence Diagnostics.- Exercises.- 3 Basic Monte Carlo Methods for Estimating Posterior Quantities.- 3.1 Posterior Quantities.- 3.2 Basic Monte Carlo Methods.- 3.3 Simulation Standard Error Estimation.- 3.4 Improving Monte Carlo Estimates.- 3.5 Controlling Simulation Errors.- Exercises.- 4 Estimating Marginal Posterior Densities.- 4.1 Marginal Posterior Densities.- 4.2 Kernel Methods.- 4.3 IWMDE Methods.- 4.4 Illustrative Examples.- 4.5 Performance Study Using the Kullback-Leibler Divergence.- Exercises.- 5 Estimating Ratios of Normalizing Constants.- 5.1 Introduction.- 5.2 Importance Sampling.- 5.3 Bridge Sampling.- 5.4 Path Sampling.- 5.5 Ratio Importance Sampling.- 5.6 A Theoretical Illustration.- 5.7 Computing Simulation Standard Errors.- 5.8 Extensions to Densities with Different Dimensions.- 5.9 Estimation of Normalizing Constants After Transformation.- 5.10 Other Methods.- 5.11 An Application of Weighted Monte Carlo Estimators.- 5.12 Discussion.- Exercises.- 6 Monte Carlo Methods for Constrained Parameter Problems.- 6.1 Constrained Parameter Problems.- 6.2 Posterior Moments and Marginal Posterior Densities.- 6.3 Computing Normalizing Constants for Bayesian Estimation.- 6.4 Applications.- 6.5 Discussion.- Exercises.- 7 Computing Bayesian Credible and HPD Intervals.- 7.1 Bayesian Credible and HPD Intervals.- 7.2 EstimatingBayesian Credible Intervals.- 7.3 Estimating Bayesian HPD Intervals.- 7.4 Extension to the Constrained Parameter Problems.- 7.5 Numerical Illustration.- 7.6 Discussion.- Exercises.- 8 Bayesian Approaches for Comparing Nonnested Models.- 8.1 Marginal Likelihood Approaches.- 8.2 Scale Mixtures of Multivariate Normal Link Models.- 8.3 “Super-Model” or “Sub-Model” Approaches.- 8.4 Criterion-Based Methods.- 9 Bayesian Variable Selection.- 9.1 Variable Selection for Logistic Regression Models.- 9.2 Variable Selection for Time Series Count Data Models.- 9.3 Stochastic Search Variable Selection.- 9.4 Bayesian Model Averaging.- 9.5 Reversible Jump MCMC Algorithm for Variable Selection.- Exercises.- 10 Other Topics.- 10.1 Bayesian Model Adequacy.- 10.2 Computing Posterior Modes.- 10.3 Bayesian Computation for Proportional Hazards Models.- 10.4 Posterior Sampling for Mixture of Dirichlet Process Models.- Exercises.- References.- Author Index.

Review :
"This book combines the theory topics with good computer and application examples from the field of food science, agriculture, cancer and others. The volume will provide an excellent research resource for statisticians with an interest in computer intensive methods for modelling with different sorts of prior information." A.V. Tsukanov in "Short Book Reviews", Vol. 20/3, December 2000


Best Sellers


Product Details
  • ISBN-13: 9781461270744
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 235 mm
  • No of Pages: 387
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 146127074X
  • Publisher Date: 04 Oct 2012
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Series Title: Springer Series in Statistics


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Monte Carlo Methods in Bayesian Computation: (Springer Series in Statistics)
Springer-Verlag New York Inc. -
Monte Carlo Methods in Bayesian Computation: (Springer Series in Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Monte Carlo Methods in Bayesian Computation: (Springer Series in Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!