Capillary Forces in Microassembly
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study(Microtechnology and MEMS)
Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study(Microtechnology and MEMS)

Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study(Microtechnology and MEMS)


     0     
5
4
3
2
1



International Edition


X
About the Book

Capillary Forces in Microassembly discusses the use of capillary forces as a gripping principle in microscale assembly. Clearly written and well-organized, this text brings together physical concepts at the microscale with practical applications in micromanipulation. Throughout this work, the reader will find a review of the existing gripping principles, elements to model capillary forces as well as descriptions of the simulation and experimental test bench developed to study the design parameters. Using well-known concepts from surface science (such as surface tension, capillary effects, wettability, and contact angles) as inputs to mechanical models, the amount of effort required to handle micro-components is predicted. These developments are then applied in a case study concerning the pick and place of balls in a watch ball bearing. Researchers and engineers involved in micromanipulation and precision assembly will find this a highly useful reference for microassembly system design and analysis.

Table of Contents:
Microassembly Specificities.- From Conventional Assembly to Microassembly.- Classification of Forces Acting in the Microworld.- Handling Principles for Microassembly.- Conclusions.- Modeling and Simulation of Capillary Forces.- First Set of Parameters.- State of the Art on the Capillary Force Models at Equilibrium.- Static Simulation at Constant Volume of Liquid.- Comparisons Between the Capillary Force Models.- Example 1: Application to the Modeling of a Microgripper for Watch Bearings.- Second Set of Parameters.- Limits of the Static Simulation.- Approaching Contact Distance, Rupture Criteria, and Volume Repartition After Separation.- Example 2: Numerical Implementation of the Proposed Models.- Conclusions of the Theoretical Study of Capillary Forces.- Experimental Aspects.- Test Bed and Characterization.- Results.- Example 3: Application to the Watch Bearing.- Example 4: Application to the Watch Bearing.- Conclusions.- General Conclusions and Perspectives.- Conclusions and Perspectives.- Appendices.- Modeling Complements.- Geometry Complements.- Comparison Between Both Approaches.- Symbols.

Review :
From the reviews: “Presented in five parts this text considers the use of capillary forces as a means to grip and assemble micrometre scale structures. … This book reads easily and is well presented in terms of technical figures and mathematical detail. … topics discussed are illustrated via a number of examples and, ultimately a thorough case study involving a watch bearing. … serves best as a reference for those specialists working in the field or for a postgraduate researcher looking for a clear explanation of microassembly principles.” (Matthew R. Foreman, Contemporary Physics, Vol. 51 (6), 2010)


Best Sellers


Product Details
  • ISBN-13: 9781441943828
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 235 mm
  • No of Pages: 263
  • Returnable: Y
  • Sub Title: Modeling, Simulation, Experiments, and Case Study
  • ISBN-10: 144194382X
  • Publisher Date: 24 Nov 2010
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Microtechnology and MEMS
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study(Microtechnology and MEMS)
Springer-Verlag New York Inc. -
Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study(Microtechnology and MEMS)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Capillary Forces in Microassembly: Modeling, Simulation, Experiments, and Case Study(Microtechnology and MEMS)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!