Unified Methods for Censored Longitudinal Data and Causality
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Unified Methods for Censored Longitudinal Data and Causality: (Springer Series in Statistics)
Unified Methods for Censored Longitudinal Data and Causality: (Springer Series in Statistics)

Unified Methods for Censored Longitudinal Data and Causality: (Springer Series in Statistics)


     0     
5
4
3
2
1



International Edition


X
About the Book

During the last decades, there has been an explosion in computation and information technology. This development comes with an expansion of complex observational studies and clinical trials in a variety of fields such as medicine, biology, epidemiology, sociology, and economics among many others, which involve collection of large amounts of data on subjects or organisms over time. The goal of such studies can be formulated as estimation of a finite dimensional parameter of the population distribution corresponding to the observed time- dependent process. Such estimation problems arise in survival analysis, causal inference and regression analysis. This book provides a fundamental statistical framework for the analysis of complex longitudinal data. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures subject to informative censoring and treatment assignment in so called semiparametric models. Semiparametric models are particularly attractive since they allow the presence of large unmodeled nuisance parameters. These techniques include estimation of regression parameters in the familiar (multivariate) generalized linear regression and multiplicative intensity models. They go beyond standard statistical approaches by incorporating all the observed data to allow for informative censoring, to obtain maximal efficiency, and by developing estimators of causal effects. It can be used to teach masters and Ph.D. students in biostatistics and statistics and is suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data. 

Table of Contents:
1 Introduction.- 1.1 Motivation, Bibliographic History, and an Overview of the book.- 1.2 Tour through the General Estimation Problem.- 1.3 Example: Causal Effect of Air Pollution on Short-Term Asthma Response.- 1.4 Estimating Functions.- 1.5 Robustness of Estimating Functions.- 1.6 Doubly robust estimation in censored data models.- 1.7 Using Cross-Validation to Select Nuisance Parameter Models.- 2 General Methodology.- 2.1 The General Model and Overview.- 2.2 Full Data Estimating Functions.- 2.3 Mapping into Observed Data Estimating Functions.- 2.4 Optimal Mapping into Observed Data Estimating Functions.- 2.5 Guaranteed Improvement Relative to an Initial Estimating Function.- 2.6 Construction of Confidence Intervals.- 2.7 Asymptotics of the One-Step Estimator.- 2.8 The Optimal Index.- 2.9 Estimation of the Optimal Index.- 2.10 Locally Efficient Estimation with Score-Operator Representation.- 3 Monotone Censored Data.- 3.1 Data Structure and Model.- 3.2 Examples.- 3.3 Inverse Probability Censoring Weighted (IPCW) Estimators.- 3.4 Optimal Mapping into Estimating Functions.- 3.5 Estimation of Q.- 3.6 Estimation of the Optimal Index.- 3.7 Multivariate failure time regression model.- 3.8 Simulation and data analysis for the nonparametric full data model.- 3.9 Rigorous Analysis of a Bivariate Survival Estimate.- 3.10 Prediction of Survival.- 4 Cross-Sectional Data and Right-Censored Data Combined.- 4.1 Model and General Data Structure.- 4.2 Cause Specific Monitoring Schemes.- 4.3 The Optimal Mapping into Observed Data Estimating Functions.- 4.4 Estimation of the Optimal Index in the MGLM.- 4.5 Example: Current Status Data with Time-Dependent Covariates.- 4.6 Example: Current Status Data on a Process Until Death.- 5 Multivariate Right-Censored Multivariate Data.- 5.1 GeneralData Structure.- 5.2 Mapping into Observed Data Estimating Functions..- 5.3 Bivariate Right-Censored Failure Time Data.- 6 Unified Approach for Causal Inference and Censored Data.- 6.1 General Model and Method of Estimation.- 6.2 Causal Inference with Marginal Structural Models.- 6.3 Double Robustness in Point Treatment MSM.- 6.4 Marginal Structural Model with Right-Censoring..- 6.5 Structural Nested Model with Right-Censoring.- 6.6 Right-Censoring with Missingness..- 6.7 Interval Censored Data.- References.- Author index.- Example index.

Review :
From the reviews: "This book provides a rigourous statistical framework for the analysis of complex large longitudinal data. It provides a comprehensive description of optimal estimation techniques based on time-dependent data structures ... . This is an excellent book for Ph.D. level students in Biostatistics and Statistics who have a strong background in mathematics. It is also suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data." (Subhash C. Kochar, Sankhya: The Indian Journal of Statistics, Vol. 66 (1), 2004) "This book provides a fundamental statistical framework for the analysis of complex longitudinal data. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures ... . The book can be used to teach masters-level and Ph.D. students in biostatistics and statistics and is suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data." (P. Rochus, Mathematical Reviews, 2003m) "This book by two major research workers in the field addresses in generality important problems involving multivariate longitudinal data ... . it is an important book dealing with important problems. Therefore, experts in modern semi-parametric theory should certainly read the book. Those with an interest focussed more on applications and able to draw together a reading group with appropriate expertise are very likely to profit greatly from a sustained study of the book." (D.R. Cox, Short Book Reviews, Vol. 23 (2), 2003)


Best Sellers


Product Details
  • ISBN-13: 9781441930552
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 235 mm
  • No of Pages: 399
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 1441930558
  • Publisher Date: 26 May 2011
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Series Title: Springer Series in Statistics


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Unified Methods for Censored Longitudinal Data and Causality: (Springer Series in Statistics)
Springer-Verlag New York Inc. -
Unified Methods for Censored Longitudinal Data and Causality: (Springer Series in Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Unified Methods for Censored Longitudinal Data and Causality: (Springer Series in Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!