Buy Bayesian Networks and Decision Graphs by Thomas Dyhre Nielsen
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Biology, life sciences > Botany and plant sciences > Bayesian Networks and Decision Graphs: (Information Science and Statistics)
Bayesian Networks and Decision Graphs: (Information Science and Statistics)

Bayesian Networks and Decision Graphs: (Information Science and Statistics)


     0     
5
4
3
2
1



International Edition


X
About the Book

Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis. The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes. give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge. < give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs. present a thorough introduction to state-of-the-art solution and analysis algorithms. The book is intended as a textbook, but it can also be used for self-study and as a reference book.

Table of Contents:
Prerequisites on Probability Theory.- Prerequisites on Probability Theory.- Probabilistic Graphical Models.- Causal and Bayesian Networks.- Building Models.- Belief Updating in Bayesian Networks.- Analysis Tools for Bayesian Networks.- Parameter estimation.- Learning the Structure of Bayesian Networks.- Bayesian Networks as Classifiers.- Decision Graphs.- Graphical Languages for Specification of Decision Problems.- Solution Methods for Decision Graphs.- Methods for Analyzing Decision Problems.

Review :
From the reviews: MATHEMATICAL REVIEWS "This is indeed an invaluable text for students in information technology, engineering, and statistics. It is also very helpful for researchers in these fields and for those working in industry. The book is self-contained...The book has enough illustrative examples and exercises for the reader. All the illustrations are motivated by real applications. Moreover, the book provides a good balance between pure mathematical treatment and the applied aspects of the subject." "The Bayesian network (BN), or probabilistic expert system, is technology for automating human-life reasoning under uncertainty in specific contexts. ... the book does an admirable job of concisely explaining a great range of concepts and techniques. ... the book is very well written and to my knowledge nothing else meets its specific goal of quickly equipping the reader with both practical skills and sufficient theoretical background. ... I certainly would not want to try to implement a BN application without reading this book." (David Tritchler, Sankhya: Indian Journal of Statistics, Vol. 64 (B Part 3), 2002) "Professor Jensen is certainly one of the most influential researchers in the field of Bayesian networks and it is not surprising that this book represents a very clear and useful presentation of the main properties and use of graphical models. ... I think that the present volume represents a useful integration of other material and a compact guide for either a student who wants an introduction to the field or a teacher who needs a reference for a course on probabilistic reasoning in AI." (Luigi Portinale, The Computer Journal, Vol. 46 (3), 2003) "This book is an introduction to Bayesian networks at an accessible level for first-year graduate or advanced undergraduate students. ... I found this book to be an excellent introduction to the topic. It is well written, provides broad topic coverage, and is quite accessible to the non-expert. ... I think Bayesian Networks and Decision Graphs would make a fine text for an introductory class in Bayesian networks or a useful reference for anyone interested in learning about the field." (David J. Marchette, Technometrics, Vol. 45 (2), 2003) "I can comfortably recommend this book as a primary source for topics related to Bayesian networks and decision graphs. This would be an excellent edition to any personal library." (Technometrics, Feburary 2008) From the reviews of the second edition: "The present book provides a very readable but also rigorous and comprehensive introduction to the subject. It would make a very good text for a graduate or an advanced undergraduate course. ... Altogether, this is a very useful book for anyone interested in learning Bayesian networks without tears." (Jayanta K. Ghosh, International Statistical Reviews, Vol. 76 (2), 2008) "This book is the second edition of Jensen's Bayesian Networks and Decision Graphs ... . Each chapter ends with a summary section, bibliographic notes, and exercises. ... provides a readable, self-contained, and above all, practical introduction to Bayesian networks and decision graphs. Its treatment is appropriate not just for statisticians, but also for computer scientists, engineers, and others researchers with appropriate mathematical background. ... highly recommend it as a text or a useful reference for anyone interested in probabilistic graphical models or decision graphs." (Alyson G. Wilson, Journal of the American Statistical Association, Vol. 104 (485), March, 2009) "Devoted to Bayesian Networks or Graphical Models and Influence Diagrams, covering a full course with nice exercises ... . It is useful as a reference for special topics. ... strongly recommended for readers or user of BNs who are interested in specifying dependency models. ... great importance to practitioners who try to find causality behind call-backs of products or crashes. ... the book can be recommended to anybody working on the interface of operations research, AI, statistics and computer science." (Hans-J. Lenz, Statistical Papers, Vol. 52, 2011)


Best Sellers


Product Details
  • ISBN-13: 9781441923943
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Edition: Revised edition
  • Language: English
  • Returnable: Y
  • Series Title: Information Science and Statistics
  • ISBN-10: 1441923942
  • Publisher Date: 23 Nov 2010
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 447
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Networks and Decision Graphs: (Information Science and Statistics)
Springer-Verlag New York Inc. -
Bayesian Networks and Decision Graphs: (Information Science and Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Networks and Decision Graphs: (Information Science and Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!