Richly Parameterized Linear Models
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Biology, life sciences > Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects(Chapman & Hall/CRC Texts in Statistical Science)
Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects(Chapman & Hall/CRC Texts in Statistical Science)

Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects(Chapman & Hall/CRC Texts in Statistical Science)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

A First Step toward a Unified Theory of Richly Parameterized Linear ModelsUsing mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects.Richly Param

Table of Contents:
Mixed Linear Models: Syntax, Theory, and Methods: An Opinionated Survey of Methods for Mixed Linear Models. Two More Tools: Alternative Formulation, Measures of Complexity. Richly Parameterized Models as Mixed Linear Models: Penalized Splines as Mixed Linear Models. Additive Models and Models with Interactions. Spatial Models as Mixed Linear Models. Time-Series Models as Mixed Linear Models. Two Other Syntaxes for Richly Parameterized Models. From Linear Models to Richly Parameterized Models: Mean Structure: Adapting Diagnostics from Linear Models. Puzzles from Analyzing Real Datasets. A Random Effect Competing with a Fixed Effect. Differential Shrinkage. Competition between Random Effects. Random Effects Old and New. Beyond Linear Models: Variance Structure: Mysterious, Inconvenient, or Wrong Results from Real Datasets. Re-Expressing the Restricted Likelihood: Two-Variance Models. Exploring the Restricted Likelihood for Two-Variance Models. Extending the Re-Expressed Restricted Likelihood. Zero Variance Estimates. Multiple Maxima in the Restricted Likelihood and Posterior.

About the Author :
James S. Hodges

Review :
"This is a thought-provoking book that stimulates discussion and further research. ... It is a refreshing idea to concentrate on poorly understood 'mysteries' in the class of linear mixed models. ... If you have ever encountered similar issues in linear mixed models, you will appreciate this book. Furthermore, if you are looking for new scientific challenges, then you will find a large resource of still open questions and useful references. Graduate students will develop a deeper understanding of the linear mixed model and critical thinking in the application of this model class. ... We recommend this book, as it will stimulate further research, leading to deeper insight into richly parametrized linear models." -Biometrical Journal, 2015 "Hodges' book is a really recommendable reference for mixed models users. Use of random effects models has exponentially grown during the last few decades mainly due to the availability of software making the fit of these models possible. Such software has made mixed models available to a wide community of users, thus complex analyses with complex covariance structures have filled both applied and theoretical journals. Nevertheless, as masterfully described within this book, the hypotheses underneath these models, and the corresponding covariance structures, are not harmless at all but, on the contrary, they may have a large impact on their fit. Hodges' monograph explores and highlights the repercussion of many aspects involved in the definition of most mixed models that are usually unknown or, even worse, ignored. Hodges makes us aware of these issues that should be kept very in mind by any mixed models user and illustrates them with lots of real case studies. This is an extremely clarifying tool for those who usually work with GLMMs in general. Mathematical details underlying GLMMs are usually overwhelming ... Hodges makes a journey to the grounds of linear mixed models, where mathematical detail is more accessible, providing a deep insight also of use in GLMMs. The approach described in this book yields some intuition about what can be happening underneath the complex GLMMs that are usually used in practice." -Miguel Martinez Beneito, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region "I recommend this text to any student/researcher who is interested in mixed models. The book is written in an enthralling and engaging style and is overflowing with interesting observations, has a unique spin, and is very thought provoking. Over the past 20 years there has been a tendency toward the fitting of more and more complex models, with the potential negative implications of this endeavor (which I will loosely term 'overfitting') being lost amid the enthusiasm for bigger and allegedly 'more realistic' models. Those with such tendencies would definitely benefit from studying this book in order to gain insight into the unexpected consequences that some mixed model choices can have. All of the model types appearing in the title are covered in great detail, including coverage of diagnostics for mixed models, a sorely under-examined topic. Real data analyses are prominent in the discussions, with strange behavior of fitting being highlighted; for example, there is a section entitled, 'Mysterious, inconvenient, or wrong results from real datasets.' The author is not afraid to state an opinion, which is very refreshing; see, for example, the critique/gentle destruction of h-likelihood in Section 7.3. Open questions are also advertised and PhD students looking for research problems could do a lot worse than read this book. ... an excellent, inspiring, and entertaining statistics book ..." -Jon Wakefield, Professor of Statistics, University of Washington "This new book by James S. Hodges is different. Whereas others describe a polished version of the theme of the book, Hodges takes another approach. In a very personal writing style, Hodges explores what we do and do not understand about mixed linear models. Why does his approach work so well? It makes you think!!! By also discussing mysterious, inconvenient, or plainly wrong results, we simply gain more insight and understanding. This works for me; I have never gained so much (hard to get) insight in so short a time from any other book I have read. I highly recommend it!" -Havard Rue, Norwegian University of Science and Technology "This book is a masterpiece, destined to become a classic. Linear mixed models are widely used by statisticians and analysts in many fields, often under other names: hierarchical, longitudinal, dynamic, random effects, multi-level, and others. Statistical packages routinely fit these models. Sometimes the packages return sensible results; sometimes not. Sometimes the user can tell whether the results are sensible; sometimes not. Oddities include 'zero variance estimates, multiple maxima, counterintuitive outlier effects, odd fits (e.g., a wiggly smooth with one smoother but not with another apparently similar smoother), big changes in fit from apparently modest changes in the model or data, and unpredictable convergence of numerical routines,' to quote from the book. There is not presently a unified theory, like that for linear regression, to explain how, why, and when our numerical routines give results that should be questioned, or at least examined further. Even so, this book does the best job I have seen of explaining what can go wrong and what the state of the art is. The subject is important; the writing is excellent; and the examples are compelling. I am excited by the prospect of teaching a course from this book. Its clarity of thought and presentation are exemplary. I recommend it for anyone who fits complicated models." -Michael Lavine, University of Massachusetts Amherst


Best Sellers


Product Details
  • ISBN-13: 9781439866849
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Chapman & Hall/CRC
  • Language: English
  • Sub Title: Additive, Time Series, and Spatial Models Using Random Effects
  • ISBN-10: 1439866848
  • Publisher Date: 19 Apr 2016
  • Binding: Digital (delivered electronically)
  • Series Title: Chapman & Hall/CRC Texts in Statistical Science


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects(Chapman & Hall/CRC Texts in Statistical Science)
Taylor & Francis Ltd -
Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects(Chapman & Hall/CRC Texts in Statistical Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects(Chapman & Hall/CRC Texts in Statistical Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!