Buy A Complete Guide to Graph Representation Learning with Case Studies
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Neural networks and fuzzy systems > A Complete Guide to Graph Representation Learning with Case Studies
A Complete Guide to Graph Representation Learning with Case Studies

A Complete Guide to Graph Representation Learning with Case Studies


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Comprehensive resource on graph representation learning (GRL), exploring fundamental principles, advanced methodologies, and case studies

A Complete Guide to Graph Representation Learning with Case Studies provides a concise understanding of the subject of graph representation learning (GRL), a rapidly advancing field in the domain of machine learning. The book explores basic concepts to state-of-the-art techniques, enabling readers to progress from a fundamental understanding of the approach to mastering its application. The authors also cover the topics of graph embedding methods, graph neural network (GNN) -based approaches, and the latest trends in GRL such as deep learning, transfer learning, graph pooling, alignment, and matching, and graph machine learning.

The book includes examples of applications of graph learning methods with real-world case studies in which the covered methods can be utilized. It also includes innovative solutions to graph machine learning problems such as node classification, link prediction, and unsupervised learning, and discusses neighborhood overlap visualization techniques and overlapping neighborhoods in heterogeneous graphs. Finally, the book provides an overview of open and ongoing research directions and student projects, providing a glimpse into potential avenues for future work.

The book also includes information on:

  • Node-level features such as node degree, node centrality, closeness, betweenness, eigenvector, page rank centrality, clustering coefficient, closed triangles, egograph, and motifs
  • Neighborhood sampling techniques such as breadth-first sampling, depth-first sampling, snowball sampling, random walk, shallow walk, edge sampling, link-based sampling, and metapath-based sampling
  • Deep learning models including Graph Autoencoder (GAE), Variational Graph Encoder (VGAE), and Graph Attention Network (GAN)
  • Graph alignment and matching, covering subgraph matching and embedding for matching

A Complete Guide to Graph Representation Learning with Case Studies is a thorough and up-to-date reference on the subject for engineers and researchers in data science and machine learning as well as graduate students in related programs of study.



About the Author :

E. Chandra Blessie, PhD, is Dean of Innovation, School of Innovation, KG College of Arts and Science Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India.

Pethuru Raj Chelliah, PhD, is Vice President and Chief Architect of the Edge AI Division of Reliance Jio Platforms Ltd. in Bangalore, India.

B. Sundaravadivazhagan, PhD, is a Professor with the College of Computing and Information Sciences at the University of Technology and Applied Sciences Al Mussanah, Oman.


Best Sellers


Product Details
  • ISBN-13: 9781394314843
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-IEEE Press
  • ISBN-10: 1394314841
  • Publisher Date: 31 Mar 2026
  • Language: English


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A Complete Guide to Graph Representation Learning with Case Studies
John Wiley & Sons Inc -
A Complete Guide to Graph Representation Learning with Case Studies
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Complete Guide to Graph Representation Learning with Case Studies

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!