Buy Principles of Data Transfer Through Communications Networks, the Internet, and Autonomous Mobiles
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Principles of Data Transfer Through Communications Networks, the Internet, and Autonomous Mobiles

Principles of Data Transfer Through Communications Networks, the Internet, and Autonomous Mobiles


     0     
5
4
3
2
1



Available


X
About the Book

Understand the principles and practical basis of global telecommunications and data communications networks with this essential text Our increasingly connected world is more reliant than ever on data transport and the communication networking technologies of the moment. Ever-expanding wireless communications and the Internet of Things have brought connectivity into more areas of our lives than ever before. Virtually every workplace and industry is now reliant at some level on data transfer. Principles of Data Transfer through Communications Networks, the Internet, and Autonomous Mobiles offers a comprehensive yet accessible overview of the principles and methods of computer communications and mobile wireless network systems. It’s designed to equip a vast range of students and professionals with the necessary toolkit to manage data flows between and across network systems at various scales. Drawing upon decades of teaching and practical experience, it’s a must-own resource for anyone looking to understand the core mechanics that power our world of mass communications. Readers will also find: Coverage of cutting-edge technologies such as autonomous vehicular highways that draw upon novel communications technologies Detailed discussion of design and performance behavior for major communication networking technologies Treatment designed for readers with no prior knowledge of computer science or programming Principles of Data Transfer through Communications Networks, the Internet, and Autonomous Mobiles is ideal for students in data communications, telecommunications and wireless networking technology courses, as well as professionals working in data communications industries or those who make use of data transfer communications networks as part of their work.

Table of Contents:
List of Figures xv About the Author xxv Preface xxvi 1 Introduction: Networking in a Nutshell 1 1.1 Purpose 1 1.2 Networking Terms and Network Elements 2 1.3 Network Transport Processes 6 1.4 An Illustrative Transport Process: Sending Packages Across a Shipping Network 9 1.5 A Layered Communications Networking Architecture 14 1.6 Communications Network Architecture: User, Control, and Management Planes 27 1.6.1 Network Architectural Planes 27 1.6.2 The Data (User) Plane 29 1.6.3 The Control Plane 30 1.6.4 The Management Plane 33 1.7 Illustrative Network Systems 34 1.7.1 Highway Transportation 34 1.7.2 Inter-regional Road System 35 1.7.3 Train Transportation Network 35 1.7.4 Enterprise Computer Communications Network 35 1.7.5 Packet-Switching Network and the Internet 36 1.7.6 Cellular Wireless Networks 38 1.7.7 WiFi: Wireless Local Area Networks (WLANs) 40 1.7.8 Satellite Communications Networks 40 1.7.9 Autonomous Vehicular Networks 43 1.7.10 Sensor Networks and Internet of Things (IoT) 43 Problems 44 2 Information Sources, Communications Signals, and Multimedia Flows 47 2.1 End Users 47 2.2 Message Flows 48 2.3 Service Classes 51 2.4 Analog and Digital Signals 53 2.4.1 Analog and Digital Sources 53 2.4.2 Analog Signals 54 2.4.3 Digital Signals 54 2.4.4 Discretization: Analog-to-Digital Signal Conversion 55 2.5 Frequency Spectrum and Bandwidth 56 2.5.1 Time Domain and Frequency Domain 56 2.5.2 Frequency Spectrum of Periodic Signals 58 2.5.3 Frequency Spectrum of Nonperiodic Signals 59 2.5.4 Nyquist Sampling Rate 61 2.6 Audio Streaming 62 2.6.1 Audio Encoding and Streaming Across a Communications Circuit 62 2.6.1.1 Audio Encoding 62 2.6.1.2 Replay and Reconstruction of a Transported Stream 64 2.6.1.3 Transport of a Stream Across a Circuit-Switched Communications Network 66 2.6.2 Audio Streaming across a Packet-Switching Communications Network: Voice Over IP (VoIP) 68 2.6.2.1 Voice Over IP (VoIP) 68 2.6.2.2 The VoIP Streaming Process and the Realtime Transport Protocol (RTP) 70 2.6.2.3 Other CODECs and VOCODERs 73 2.6.2.4 Quality Metrics 75 2.7 Video Flows and Streams 77 2.7.1 Conversion of Light Waves to Electrical Signals 77 2.7.2 Digital Still Images 78 2.7.3 Full Motion Video 81 2.7.4 Video Compression 81 2.7.5 Transporting IP Video Streams over Communications Networks 83 2.7.6 Dynamic Adaptive Streaming over HTTP (DASH) 86 2.7.7 Performance Measures 87 2.8 Data Flows 88 Problems 90 3 Transmissions over Communications Channels 93 3.1 Communications Media 93 3.2 Wireline Communications Media 94 3.3 Wireless Communications Media 95 3.4 Message Transmission Over a Communications Channel 97 3.5 Noisy Communications Channels 98 3.6 Illustrative Calculation of Signal-to-Noise-plus-Interference Ratio (SINR) 102 3.7 Channel Capacity 104 3.8 Modulation/Coding Schemes (MCSs) 107 3.8.1 The Modulation Concept 107 3.8.2 Analog Modulation Techniques 108 3.8.3 Digital Modulation Techniques 110 3.8.4 Illustrative Digital Modulation/Coding Schemes 113 3.8.4.1 Modulation/Coding Schemes Used by a Wi-Fi Version 113 3.8.4.2 MCS Configurations for an LTE Cellular Wireless Radio Access Network 115 Problems 117 4 Traffic Processes 119 4.1 A Multilevel Traffic Model 119 4.2 Message Traffic Processes 122 4.3 Modeling a Traffic Flow as a Stochastic Point Process 123 4.4 Renewal Point Processes and the Poisson Process 125 4.5 Discrete-Time Renewal Point Processes and the Geometric Point Process 129 4.6 Traffic Rates and Service Demand Loads 131 4.6.1 Client–Server Traffic Association 131 4.6.2 Call Level Traffic Rates 132 4.6.3 Burst Level Traffic Rates 134 4.6.4 Message Level Traffic Rates 134 4.7 Traffic Matrix: Who Communicates with Whom 136 Problems 139 5 Performance Metrics 143 5.1 Quality of Service (QoS) and Quality of Experience (QoE) Metrics 143 5.2 Quality of Service (QoS) Metrics for Communications Networking 144 5.2.1 Throughput Metrics 144 5.2.2 Message Delay Metrics 148 5.2.3 Error Rate Metrics 150 5.2.4 Availability and Reliability Metrics 151 5.2.5 Cyber Security 153 5.2.6 Illustration: QoS Metrics for a Cellular Wireless Network 155 5.3 Quality of Experience (QoE) 157 Problems 159 6 Multiplexing: Local Resource Sharing and Scheduling 161 6.1 Sharing Resources Through Multiplexing 162 6.2 Fixed Multiplexing Methods 164 6.2.1 Time Division Multiplexing (TDM) 166 6.2.2 Frequency Division Multiplexing (FDM) 169 6.2.3 Wavelength Division Multiplexing (WDM) 170 6.2.4 Code Division Multiplexing (CDM) 170 6.2.5 Space Division Multiplexing (SDM) 171 6.3 Statistical Multiplexing Methods 171 6.4 Scheduling Algorithms and Protocols 173 6.5 Statistical Multiplexing Over One-to-Many Media 183 Problems 186 7 Queueing Systems 189 7.1 A Basic Queueing System Model 189 7.2 Queueing Processes and Performance Metrics 192 7.3 Queueing Systems: Properties 196 7.3.1 Busy Cycle Properties 196 7.3.2 Little’s Formula 197 7.4 Markovian Queueing Systems 199 7.5 Performance Behavior of Markovian Queueing Systems 201 7.5.1 M∕M∕1: A Single Service-Channel Queueing System 201 7.5.2 M∕M∕1∕N: A Finite Capacity Single Server Queueing System 207 7.5.3 A Multi-server Queueing System 208 7.6 A Queueing System with General Service Times 213 7.7 Priority Queueing 218 7.8 Queueing Networks 222 7.9 Simulation of Communications Networks 227 7.9.1 Monte Carlo Simulations of Communications Networks 227 7.9.2 Illustrative Discrete-Event Monte Carlo Simulation of a Queueing System 230 Problems 235 8 Multiple Access: Sharing from Afar 241 8.1 Multiple Access: Sharing from Afar 241 8.2 Fixed Multiple Access Schemes 244 8.2.1 Time Division Multiple Access (TDMA) 244 8.2.2 Frequency Division Multiple Access (FDMA) 246 8.2.3 Space Division Multiple Access (SDMA) 249 8.2.4 Code Division Multiple Access (CDMA) 253 8.3 Demand-Assigned Multiple Access (DAMA) Schemes 258 8.3.1 Demand- Assigned Schemes 258 8.3.2 Demand-Assigned Reservation Schemes 258 8.3.3 Polling Schemes 262 8.3.3.1 Polling Methods and Procedures 262 8.3.3.2 Performance Behavior of Polling Systems 269 8.4 Random Access: Try and Try Again 272 8.4.1 Uncoordinated Transmissions Using Random Access 272 8.4.2 Pure Random Access: The ALOHA Protocol 275 8.4.3 Carrier Sense Multiple Access (CSMA): A Listen Before Talk Protocol 284 8.4.4 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) and Ethernet Local Area Network (LAN) 291 8.4.5 The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Protocol and the Wi-Fi Wireless Local Area Network (WLAN) 297 8.4.5.1 WLAN Layout and Shared Wireless Medium Resources 297 8.4.5.2 Frame Types 299 8.4.5.3 Distributed Coordination Function (DCF): The Basic CSMA/CA Medium Access Control Scheme 300 8.4.5.4 Point Coordination Function (PCF): A Polling-Based Contention-less Access Scheme 302 8.4.5.5 Alleviating the Hidden Terminal Problem: An Optional RTS/CTS Scheme 302 8.4.5.6 Hybrid Coordination Function (HCF): Providing QoS to Designated Traffic Categories (tc) 304 Problems 306 9 Switching, Relaying, and Local Networking 309 9.1 Switching 309 9.2 Extending the Coverage Span: Repeaters and Relays 317 9.3 Local Networking Across a Switching Fabric: Bridging of MAC Frames 321 9.3.1 Local Internetting Using Bridges and Layer 2 Switches 321 9.3.2 Building a Frame Forwarding Table via a Flooding Protocol 324 9.3.3 Spanning Tree Protocol (STP) Methods for Constructing a Forwarding Table 325 9.3.4 Multipath Networking Across Local Switch Fabrics: Shortest Path Bridging (spb) 330 9.3.4.1 Shortest Path Bridging (SPB) 330 9.3.4.2 Illustrative SPB Network 334 9.3.4.3 The Control Plane: Link State Dissemination and SPT Constructions 334 9.3.4.4 Multitier Overlay: Data Transport Across Multiple Equal-Cost Paths 337 9.3.4.5 The Forwarding Data Base (FDB) 339 Problems 341 10 Circuit Switching 345 10.1 Circuit Switching: The Method 345 10.2 The Circuit Switching Network System Architecture 346 10.3 The Switching Fabric 351 10.4 The Signaling System 354 10.5 Performance Characteristics of a Circuit Switching Network 356 10.6 Cross-Connect Switching and Wavelength Switched Optical Networks 359 Problems 368 11 Connection-Oriented Packet Switching 371 11.1 Connection-Oriented Packet Switching: The Method 372 11.2 The Virtual Circuit Switching and Networking Processes 373 11.3 Technologies That Use a Connection-Oriented Packet-Switching Method 376 11.4 Performance Characteristics of a Virtual Circuit Switching Network 379 Problems 384 12 Datagram Networking: Connectionless Packet Switching 387 12.1 Connectionless Packet Switching: The Method 388 12.2 Packet Flows and the Packet Router 390 12.3 Performance Characteristics 392 Problems 395 13 Error Control: Please Send It Again 397 13.1 Error Control Methods 397 13.2 Error Control Using Forward Error Correction (FEC) 400 13.3 Automatic Repeat Request (ARQ) 404 13.3.1 Error Detection Coding 404 13.3.2 The ARQ Process 406 13.3.3 Stop-and-Wait ARQ 407 13.3.4 Go-Back-N ARQ: A Sliding Window Protocol 415 13.3.5 Selective-Repeat ARQ: Resend Only Uncorrectable Received Blocks 420 13.4 Hybrid ARQ (HARQ) Error Control 423 Problems 429 14 Flow and Congestion Control: Avoiding Overuse of User and Network Resources 431 14.1 Flow and Congestion Controls: Objectives and Configurations 431 14.2 Feedback-Based Closed-Loop Flow Control 434 14.3 Open-Loop Input-Rate Flow and Congestion Controls 436 14.4 Congestion Control: Relieving Bottlenecks 444 14.4.1 Reactive Congestion Control 444 14.4.2 Proactive Congestion Control 448 Problems 451 15 Routing: Quo Vadis? 453 15.1 Routing: Selecting a Preferred Path 453 15.2 Route Metrics 455 15.3 Routing Domains and Autonomous Systems 457 15.4 Route Selection Methods 461 15.5 Shortest Path Tree (SPT): Mapping the Best Path to Each Node 464 15.6 Distance Vector Routing: Consult Your Neighbors 465 15.7 Link-State Routing: Obtain the Full Domain Graph 470 Problems 473 16 The Internet 475 16.1 The Internet Networking Architecture 476 16.2 HTTP: Facilitating Client–Server Interaction Over the Internet 482 16.3 Internet Protocol (IP) Addresses 485 16.3.1 Internet Protocol Version 4 (IPv4) Addresses 485 16.3.2 Internet Protocol Version 6 (IPv6) Addresses 491 16.4 Internet Protocol (IP) Packets 492 16.4.1 Internet Protocol Version 4 (IPv4) Packets 492 16.4.2 Internet Protocol Version 6 (IPv6) Packets 494 16.5 Transport Layer Protocols 496 16.5.1 Transmission Control Protocol (TCP) 496 16.5.2 User Datagram Protocol (UDP) 501 16.5.3 QUIC: A Fast and Secure Transport Protocol 503 16.6 Routing Over the Internet 508 16.6.1 Autonomous Systems as Routing Domains 508 16.6.2 Intra-domain Routing: OSPF 509 16.6.3 Inter-domain Routing: Border Gateway Protocol (BGP) 511 Problems 518 17 Local and Personal Area Wireless Networks 521 17.1 Illustrative Personal Area and Local Area Wireless Networks 522 17.2 WiFi: A Wireless Local Area Network (WLAN) 523 17.3 Personal Area Networks (PANs) for Short-Range Wireless Communications 528 17.3.1 Personal Area networks (PANs) 528 17.3.2 Short-Range Wireless Communications Using Bluetooth 528 17.3.3 Short-Range Low Data Rate Wireless Communications Using Zigbee 533 Problems 539 18 Mobile Cellular Wireless Networks 541 18.1 Configurations of Mobile Wireless Networks 541 18.2 Architectural Elements of a Cellular Wireless Network 544 18.2.1 The Cellular Coverage 544 18.2.2 Cellular Networking Generations 546 18.2.3 Key Components of a Cellular Network Architecture 549 18.3 Cellular Network Communications: The Process 551 18.4 The 4G-LTE Protocol Architecture 554 18.4.1 Allocation of Wireless Access Resources 558 18.5 Next-Generation 5G, 6G, and Millimeter-Wave Cellular Networks 560 Problems 562 19 Mobile Ad Hoc Wireless Networks 567 19.1 The Mobile Ad Hoc Wireless Networking Concept 567 19.2 Ad Hoc On-Demand Distance Vector (AODV) Routing 569 19.3 Dynamic Source Routing (DSR) 573 19.4 Optimized Link State Routing (OLSR): A Proactive Routing Algorithm 576 19.5 Mobile Backbone Networks (MBNs): Hierarchical Routing for Wireless Ad Hoc Networks 582 Problems 592 20 Next-Generation Networks: Enhancing Flexibility, Performance, and Scalability 595 20.1 Network Virtualization 595 20.2 Software-Defined Networking (SDN) 597 20.3 Network Functions Virtualization (NFV) 599 20.4 Network Slicing 601 20.5 Edge Computing, Open Interfaces, Technology Convergence, Autonomous Operations 602 Problems 604 21 Communications and Traffic Management for the Autonomous Highway 607 21.1 Data Communications Services for Vehicular Wireless Networks 608 21.2 Configurations of Vehicular Data Communication Networks 610 21.3 Vehicular Wireless Networking Methods 613 21.3.1 VANET-Based Vehicle-to-Vehicle (V2V) Networking Protocols 613 21.3.2 Selection of Relay Nodes 616 21.3.3 Flow and Congestion Controls 625 21.3.4 Vehicular Backbone Networks (VBNs): Hierarchical Networking Using Cluster Formations 628 21.3.5 Vehicular Backbone Networks (VBNs): Backbone Network Synthesis 633 21.3.6 Infrastructure-Aided Vehicle-to-Vehicle (V2V) Networking 638 21.3.7 Cellular Vehicle-to-Everything (CV2X) Networking 641 21.3.8 Networking Automated and Autonomous Vehicles 648 21.3.9 Traffic Management of Autonomous Highway Systems 650 21.3.9.1 Achieving the Highest Vehicle Flow Rate 650 21.3.9.2 Traffic Management Under Queueing and Transit Delay Limits 656 Problems 665 22 Networking Security 671 22.1 Network Security Architecture and Cybersecurity Frameworks 671 22.2 Message Confidentiality: Symmetric Encryption 675 22.3 Public Key Encryption (PKE) 677 22.4 Digital Signature 679 22.5 Secure Exchange of Cryptographic Keys 680 22.6 Secure Client–Server Message Transport Over the Network 682 Problems 683 References 685 Index 689

About the Author :
Izhak Rubin, PhD, is Distinguished Professor Emeritus of Electrical and Computer Engineering at UCLA, California, USA. He has decades of experience in research and development studies of the Internet, and has published very widely on networking methods, performance modeling, and analysis techniques. He has served as the editor of leading professional journals, and has been elected as an IEEE Life Member Fellow.


Best Sellers


Product Details
  • ISBN-13: 9781394267750
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-IEEE Press
  • Language: English
  • Returnable: N
  • Returnable: N
  • ISBN-10: 1394267754
  • Publisher Date: 20 Dec 2024
  • Binding: Hardback
  • No of Pages: 736
  • Returnable: N
  • Weight: 1518 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Principles of Data Transfer Through Communications Networks, the Internet, and Autonomous Mobiles
John Wiley & Sons Inc -
Principles of Data Transfer Through Communications Networks, the Internet, and Autonomous Mobiles
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Principles of Data Transfer Through Communications Networks, the Internet, and Autonomous Mobiles

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!