Buy The Mechanics of Biomaterials Studied at Micro- And Nano-Scales
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Mechanical engineering > The Mechanics of Biomaterials Studied at Micro- And Nano-Scales
The Mechanics of Biomaterials Studied at Micro- And Nano-Scales

The Mechanics of Biomaterials Studied at Micro- And Nano-Scales


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "The Mechanics of Biomaterials Studied at Micro- and Nano-scales" by Zhuolong, Zhou, 周卓龍, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The past few decades have seen the advent of a number of key nanomechanical techniques and instruments being developed and successfully applied to study biomaterials, including optical stretching, atomic force microscope nanoindentation, and micro-pipette aspirator. These have enabled the study of biological samples and biomaterials at the micro- and nano- scales. In this research, a set of such techniques, including atomic-force microscopy, nanoindentation, and optical trapping, was applied to investigate a variety of biological cells and proteins at their nano-scale. In the course of the work, key testing protocols were developed whenever necessary, or new phenomena or behaviour were uncovered. Firstly, the protein-protein interactions between Hepatitis B surface antigen and its antibodies were studied by measuring the binding force between microspheres coated with such proteins using optical tweezers. A protocol for measuring the protein-protein interactions by using optical tweezers was developed and successfully applied. Secondly, a rate-jump method was developed to yield intrinsic elastic modulus values that are independent of the experimental conditions from soft biological cells. The elastic moduli of an oral cancer cell line UM1 and non-adherent blood cells were investigated by nanoindentation in an atomic force microscope with a flat-ended tip and an optical tweezers system platform, respectively. The rate-jump method was found to be effective in grading the stiffness values of different cell types. By using this method, tongue squamous cell carcinoma(TSCC)cells with higher metastatic potential were found to show a reduction in elastic modulus as compared to TSCC cells with lower metastatic potential; moreover, the decrease in elastic modulus was accompanied by epithelial-mesenchymal transition and cytoskeleton changes, small nucleus size and large N/C ratio. These findings demonstrate a close relationship between cellular elastic modulus and metastasis of TSCC, and that elastic modulus detected by AFM nanoindentation via the rate-jump method can potentially be used to grade the metastatic potential of cancer cells. Thirdly, the biomechanical properties of normal leukaemia cells and cells treated with various cancer drugs, including phorbol 12-myristate 13-acetate (PMA), all-trans retinoic acid (ATRA), Cytoxan (CTX) and Dexamethasone (DEX), were measured by indentation tests using optical tweezers. It was found that after treatment by ATRA, CTX Thirdly, the biomechanical properties of normal leukaemia cells and cells treated with various cancer drugs, including phorbol 12-myristate 13-acetate (PMA), all-trans retinoic acid (ATRA), Cytoxan (CTX) and Dexamethasone (DEX), were measured by indentation tests using optical tweezers. It was found that after treatment by ATRA, CTX Finally, the effects of vibrations on cell death were investigated by means of optical trapping. Such experiments have shown that mechanically vibrating the nucleus inside a cell in a near-resonance condition can significantly promote necrosis. The findings lay down a new concept for treating leukemia based on the cell-structure dependent resonance response of targeted malignant cells. Applying mechanical vibrations via a sound-transducer to batches of cells in culture media was also shown to lead to similar cell-type specific necrosis. The results here from a scientific basis for exploring drug-fre


Best Sellers


Product Details
  • ISBN-13: 9781361385531
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 264
  • Weight: 903 gr
  • ISBN-10: 1361385537
  • Publisher Date: 27 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 16 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Mechanics of Biomaterials Studied at Micro- And Nano-Scales
Open Dissertation Press -
The Mechanics of Biomaterials Studied at Micro- And Nano-Scales
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Mechanics of Biomaterials Studied at Micro- And Nano-Scales

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!