Buy Determination of Surface Atomic Structures of Bi2se3(111)-(2x2) Film and Zno Nano-Rods by Low Energy Electron Diffraction
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Determination of Surface Atomic Structures of Bi₂se₃(111)-(2x2) Film and Zno Nano-Rods by Low Energy Electron Diffraction
Determination of Surface Atomic Structures of Bi₂se₃(111)-(2x2) Film and Zno Nano-Rods by Low Energy Electron Diffraction

Determination of Surface Atomic Structures of Bi₂se₃(111)-(2x2) Film and Zno Nano-Rods by Low Energy Electron Diffraction


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Determination of Surface Atomic Structures of Bi₂Se₃(111)-(2X2) Film and ZnO Nano-rods by Low Energy Electron Diffraction" by Wing-lun, Chung, 鍾詠麟, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The emergence of topological insulators and nano-materials brings the importance of surface science to a new level. The properties of topological insulator depend strongly on surface state. The novel properties of nano-materials are strictly related to their surfaces structure due to the large surface-area-to-volume ratio. In this thesis, I investigated the surface morphology of the Bi2Se3(111)-(2x2) reconstruction and the ZnO nano-rods by means of low energy electron diffraction(LEED). Bi2Se3(111)-(2x2) was prepared by molecular beam epitaxy, and the reconstruction is believed to be caused by Se adsorption. An atomic model with Se on the top site is proposed by the virtue of multiple incidence angles LEED IV Patterson inversion. Well aligned ZnO nano-rods array were prepared by template-assisted hydrothermal growth and vapour phase transport growth. Nono-rods prepared by vapour phase transport method were able to give the LEED IV spectra. The side facet orientation is found to be {101 ̅0} in the LEED perspective. The peak shifts of nano-rod IV spectra suggest that the nano-rods undergo a different extent of relaxation compared with that of single crystal. Here, I emphasise it is the first ever successful extraction of LEED IV from free standing nano-material surfaces. Although the above proved LEED is a powerful technique in surface morphology analysis, conventional LEED optics suffers electric charge up when probing high-resistivity material. In order to bring LEED to its widest potential, microchannel plate low energy electron diffraction (MCP-LEED) system was implemented. MCP-LEED avoids the charge up by bringing the electron beam current further down to the order of nA, when compared with mA of the conventional LEED system. An automate LEED data acquisition scheme was installed on the MCP-LEED system and the validity of the MCP-LEED system was verified by comparing its LEED IV spectra with that of the conventional LEED. The capability of MCP-LEED is justified by probing the high-resistivity ZnO single crystal manufactured by Tokyo Denpa. Pros and cons, as well as suggested future improvements of MCP-LEED are discussed. DOI: 10.5353/th_b5295506 Subjects: Low energy electron diffraction Bismuth compounds - Surfaces Atomic structure Zinc oxide - Surfaces


Best Sellers


Product Details
  • ISBN-13: 9781361381984
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 158
  • Weight: 662 gr
  • ISBN-10: 1361381981
  • Publisher Date: 27 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 11 mm
  • Width: 216 mm

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Determination of Surface Atomic Structures of Bi₂se₃(111)-(2x2) Film and Zno Nano-Rods by Low Energy Electron Diffraction
Open Dissertation Press -
Determination of Surface Atomic Structures of Bi₂se₃(111)-(2x2) Film and Zno Nano-Rods by Low Energy Electron Diffraction
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Determination of Surface Atomic Structures of Bi₂se₃(111)-(2x2) Film and Zno Nano-Rods by Low Energy Electron Diffraction

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!