Buy Ranking and Similarity Queries on Complex Data Types
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Ranking and Similarity Queries on Complex Data Types
Ranking and Similarity Queries on Complex Data Types

Ranking and Similarity Queries on Complex Data Types


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Ranking and Similarity Queries on Complex Data Types" by Yilun, Cai, 蔡奕倫, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Ranking queries and similarity queries are elementary operations with many important applications. There are lots of research works investigating efficient evaluation of various ranking and similarity queries in databases over the past few decades. In this thesis, ranking and similarity queries on three interesting complex data types are studied, namely, multidimensional cube, object summary and tree. Efficient and effective solutions are proposed to solve their related applications. First, the evaluation of ranking queries on multidimensional cubes is studied. In exploratory data analysis, a relation can be considered as a multidimensional cube to investigate the relationship among its attributes. Given a relation with records that can be ranked, an interesting problem is to identify selection conditions for the relation, which result in sub-relations qualified by an input record and render the ranking of the input record as high as possible among the qualifying tuples. The ranking of the input record in a sub-relation measures the quality of the corresponding multidimensional cube of this sub-relation. In this thesis, a standing maximization problem, which aims to identify a multidimensional cube of high quality, is extensively studied. As an immediate consequence of its NP-hardness, three greedy methods are proposed to explore the search space only partially, while striving to identify sub-optimal solutions of high quality. Next, the efficient evaluation of ranking queries on object summaries is investigated. An object summary is a tree structure of tuples that summarizes the context of a particular data subject tuple. The object summary has been used as a model of keyword search in relational databases; where given a set of keywords, the objective is to identify the data subject tuples relevant to the keywords and their corresponding object summaries. However, a keyword search result may return a large number of object summaries, which brings in the issue of effectively and efficiently ranking them in order to present only the most important ones to the user. In this thesis, a model that ranks object summaries according to their relevance to a set of input thematic keywords is introduced. Efficient algorithms are proposed to answer the proposed thematic ranking query. Finally, the similarity join query on tree-structured data is studied. Treestructured data are ubiquitous nowadays and a number of applications require efficient management of such data. Given a large collection of tree-structured objects (e.g., XML documents), the similarity join finds the pairs of objects that are similar to each other, based on a similarity threshold and a tree edit distance measure. The state-of-the-art similarity join methods compare simpler approximations of the objects (e.g., strings), in order to prune pairs that cannot be part of the similarity join result based on distance bounds derived by the approximations. In this thesis, we propose a novel similarity join approach, which is based on the dynamic decomposition of the tree objects into subgraphs, according to the similarity threshold. Our technique avoids computing the exact distance between two tree objects, if the objects do not share at least one common subgraph. DOI: 10.5353/th_b5435640 Subjects: Database management


Best Sellers


Product Details
  • ISBN-13: 9781361371985
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 164
  • Weight: 395 gr
  • ISBN-10: 1361371986
  • Publisher Date: 27 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 9 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Ranking and Similarity Queries on Complex Data Types
Open Dissertation Press -
Ranking and Similarity Queries on Complex Data Types
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Ranking and Similarity Queries on Complex Data Types

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!