Buy Up-Regulation of Alpha-Enolase (Eno1) by Hif-1a In Retinal Pigment Epithelial Cells After Hypoxic Challenge Is Not Involved in the Regulation of Vegf Secretion
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Medicine & Health Science textbooks > Clinical and internal medicine > Ophthalmology > Up-Regulation of Alpha-Enolase (Eno1) by Hif-1α In Retinal Pigment Epithelial Cells After Hypoxic Challenge Is Not Involved in the Regulation of Vegf Secretion
Up-Regulation of Alpha-Enolase (Eno1) by Hif-1α In Retinal Pigment Epithelial Cells After Hypoxic Challenge Is Not Involved in the Regulation of Vegf Secretion

Up-Regulation of Alpha-Enolase (Eno1) by Hif-1α In Retinal Pigment Epithelial Cells After Hypoxic Challenge Is Not Involved in the Regulation of Vegf Secretion


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Up-regulation of Alpha-enolase (ENO1) by HIF-1α in Retinal Pigment Epithelial Cells After Hypoxic Challenge is Not Involved in the Regulation of VEGF Secretion" by Feihui, Zheng, 郑斐晖, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Choroidal neovascularization (CNV) is a leading threat to severe vision loss, particularly in patients with age-related macular degeneration (AMD). In CNV, newly formed blood vessels sprout from the choroid to the sub-retinal space, where leakage and bleeding of the abnormal vessels lead to photoreceptor death and subsequent vision loss. It is believed that CNV is mediated by growth factors (e.g. vascular endothelial growth factor {VEGF}) produced by the retinal pigment epithelium (RPE) under pathological states (e.g. hypoxia). Current treatments for CNV aiming at countering VEGF only help decrease leakage and inhibit formation of CNV, but none of them is curative and the recurrence rate remains high. In order to find other more powerful potential therapeutic targets, the regulations of VEGF signaling in the pathophysiology of CNV is the focus of numerous translational investigations. Previously, Hypoxia-inducible factor-1 (HIF-1), a crucial transcriptional factor in response to hypoxia, is identified as the master transcriptional factor controlling VEGF expression in the RPE promoting CNV. Alpha-enolase (ENO1), a key glycolytic enzyme, is known to be over expressed in several types of carcinomas also under the regulation of HIF-1. ENO1 has been reported to be closely associated with cancer progression, angiogenesis, and venous invasion. The molecular events of ENO1 in the pathogenesis of promoting angiogenesis are of interest but still barely understood. Recently, the association of ENO1 antibodies with retina has been seen in patients with AMD. We hypothesize that ENO1 expression in the RPE may play a role in the development of CNV, participating in the regulation of VEGF. Hypoxia is an important pathological condition in the formation of CNV. Here, we first determined ENO1 expression and cell death in a human RPE cell line, ARPE-19, under cobalt (II) chloride (CoCl2)-induced hypoxia or anoxia (95% N2, 5% CO2). To further investigate the regulation of ENO1 in CNV, HIF-1α-diminished RPE cells were generated using small interfering RNA (siRNA) and the change of ENO1 expression in response to hypoxic injury was determined. Upon 24 hr of treatment with CoCl2-induced hypoxia or anoxia, the expression of ENO1 and VEGF increased significantly along with HIF-1α in ARPE-19 cells, both of which could in turn be significantly down-regulated by HIF-1α siRNA. Interestingly, cell death remained low in ARPE-19 cells, even after 24 hr of CoCl2-induced hypoxia or anoxia. To further study the role of ENO1 in CNV, we started by investigating the relationship between ENO1 and VEGF. SiRNA was used to knock down the expression of ENO1 in ARPE-19 cells. Upon transfection with the siRNA, ENO1 expression was successfully down-regulated when treated with CoCl2-induced hypoxia. However, VEGF secretions from the ENO1-diminished ARPE-19 cells under CoCl2-induced hypoxia remained unchanged. Double knockdown of ENO1 together with HIF-1α by siRNA also did not help to further suppress VEGF secretion in the hypoxic ARPE-19 cells. Hence, ENO1 was demonstrated to be activated and up-regulated by HIF-1 in RPE cells responding to hypoxia, suggesting a potential role of ENO1 in favoring the formation of CNV, but not through influencing VEGF secretion. DOI: 10.5353/th_b5388031 Subjects: Anoxemia


Best Sellers


Product Details
  • ISBN-13: 9781361369326
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 120
  • Weight: 295 gr
  • ISBN-10: 1361369329
  • Publisher Date: 27 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 6 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Up-Regulation of Alpha-Enolase (Eno1) by Hif-1α In Retinal Pigment Epithelial Cells After Hypoxic Challenge Is Not Involved in the Regulation of Vegf Secretion
Open Dissertation Press -
Up-Regulation of Alpha-Enolase (Eno1) by Hif-1α In Retinal Pigment Epithelial Cells After Hypoxic Challenge Is Not Involved in the Regulation of Vegf Secretion
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Up-Regulation of Alpha-Enolase (Eno1) by Hif-1α In Retinal Pigment Epithelial Cells After Hypoxic Challenge Is Not Involved in the Regulation of Vegf Secretion

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!