Functions of Arabidopsis Acyl-Coenzyme a Binding Proteins in Stress Responses
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > History and Archaeology > History > Functions of Arabidopsis Acyl-Coenzyme a Binding Proteins in Stress Responses
Functions of Arabidopsis Acyl-Coenzyme a Binding Proteins in Stress Responses

Functions of Arabidopsis Acyl-Coenzyme a Binding Proteins in Stress Responses


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Functions of Arabidopsis Acyl-coenzyme A Binding Proteins in Stress Responses" by Zhiyan, Du, 杜志岩, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In Arabidopsis thaliana, a gene family encodes acyl-CoA-binding proteins (ACBPs) conserved at the acyl-CoA-binding domain which facilitates the binding to acyl-CoA esters. These ACBPs, designated ACBP1 to ACBP6, range in size from 10.4 to 73.1 kD. Previous studies have shown that the the overexpression of ACBP1 or ACBP2 in Arabidopsis likely promotes repair of lipid membranes and result in enhanced tolerance to lead and cadmium, respectively. Microarray data (http: //bar.utoronto.ca/) revealed that the expression of ACBP1 and ACBP2 is also regulated by other abiotic stresses, such as cold and drought, suggestive of their association with these environmental pressures. The aim of this study is to investigate and better understand the roles of ACBP1 and ACBP2 in different stress responses. It has been previously observed that the expression of both ACBP1 and ACBP4 is lead [Pb(II)]-inducible and recombinant ACBP1 and ACBP4 bind Pb(II) in vitro. In this study, ACBP1 and ACBP4 were overexpressed in Brassica juncea to test if these ACBPs could be extended for application in Pb(II) phytoremediation in transgenic B. juncea. On freezing (-12 to -8 C) treatment, ACBP1-overexpressing Arabidopsis was freezing sensitive and accumulated more phosphatidic acid (PA), but less phosphatidylcholine (PC), in contrast to acbp1 mutant plants which were freezing tolerant and had reduced PA and elevated PC levels. Such changes in PC and PA were consistent with the expression of the mRNA encoding phospholipase D1 (PLD1), a major enzyme that promotes the hydrolysis of PC to PA. In contrast, the expression of phospholipase D (PLD), which plays a positive role in freezing tolerance, was up-regulated in acbp1 mutant plants and down-regulated in ACBP1-overexpressing plants. Reduced PLD1 expression and decreased hydrolysis of PC to PA may enhance membrane stability in the acbp1 mutant plants. Given that recombinant ACBP1 binds PA and acyl-CoA esters in vitro, the expression of PLD1 and PLD could be regulated by PA or acyl-CoAs maintained by ACBP1, if ACBP1 were to resemble the yeast 10-kD ACBP by its capability to modulate gene expression during stress responses. Interestingly, another membrane-associated ACBP, ACBP2, which shows high (76.9%) conservation in amino acid homology to ACBP1, did not appear to be affected by freezing treatment. Besides freezing stress, ACBP1, as well as ACBP2, have been observed to participate in abscisic acid (ABA) signaling. They both promote ABA signaling in seed germination and seedling development, while only ACBP2 is involved in the drought response. The overexpression of ACBP2 in Arabidopsis up-regulated reactive oxygen species (ROS) production culminating in reduction in stomatal aperture and water loss in guard cells, thereby enhancing drought tolerance. For tests in phytoremediation, B. juncea was selected for overexpression of ACBP1 and ACBP4 because it is fast-growing, has a higher biomass than Arabidopsis, and is known to be a good accumulator of Pb(II). However, results of Pb(II) treatment for two days showed that the overexpression of ACBP1 or ACBP4 in B. juncea did


Best Sellers


Product Details
  • ISBN-13: 9781361368374
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 274
  • Weight: 921 gr
  • ISBN-10: 1361368373
  • Publisher Date: 27 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 16 mm
  • Width: 216 mm

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Functions of Arabidopsis Acyl-Coenzyme a Binding Proteins in Stress Responses
Open Dissertation Press -
Functions of Arabidopsis Acyl-Coenzyme a Binding Proteins in Stress Responses
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Functions of Arabidopsis Acyl-Coenzyme a Binding Proteins in Stress Responses

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!