Buy Computational Imaging Technologies for Optical Lithography Extension
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Computational Imaging Technologies for Optical Lithography Extension
Computational Imaging Technologies for Optical Lithography Extension

Computational Imaging Technologies for Optical Lithography Extension


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Computational Imaging Technologies for Optical Lithography Extension" by Jia, Li, 李佳, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: With the development and production of integrated circuits at the 22nm node, optical lithography faces increasing challenges to keep up with the specifications on its performance along various metrics, such as pattern fidelity and process window. The past few years saw the emergence of source mask optimization (SMO) as an important technique in computational lithography, which allows lithographers to rise to the challenges by exploiting a larger design space on both mask and illumination configuration, and integrates with methods such as inverse imaging. Yet, many methods that are used to tackle SMO problem arising in the inverse imaging involve heavy computation and slow convergence, making the technique unappealing for full-chip simulations or large circuits. Therefore, the purpose of this research is to take advantage of computational imaging technologies to solve source and mask design problems, extending the lifetime of optical lithography. The computational burden results in part from identical optimization over the whole mask pattern, consequently, we propose a weighted SMO scheme which applies different degrees of correction in the corresponding regions so that the optimal solutions are reached with fewer iterations. Additionally, undesirably long time is also attributed to the algorithm adopted to solve SMO problem. A fast algorithm based on augmented Lagrangian methods is therefore developed, which use the quasi-Newton method to accelerate convergence, thereby shortening the overall execution time. However, as semiconductor lithography is pushed to even smaller dimensions, mask topography effects have to be taken into account for a more accurate solution of SMO. At this stage, intensive computation is spent mainly in rigorous 3D mask modeling and simulations. To address this issue, we devise an optimization framework incorporating pupil aberrations into SMO procedure, which is performed based on the thin mask model so as to ensure a faster speed. We apply the above approaches to various mask geometries with different critical dimensions. Compared to conventional SMO, simulation results show that the proposed methods lead to better pattern fidelity and larger process window, especially in rigorous calculations. This demonstrates that the source and mask design generated through our algorithms are more practical. More importantly, the improved performance is not at the cost of speed. Instead, our methods take the least time to achieve it. This allows the advantages of computational imaging technologies to be worth exploring for further applications in optical lithography. DOI: 10.5353/th_b5328034 Subjects: Image processing - Digital techniques Microlithography


Best Sellers


Product Details
  • ISBN-13: 9781361357811
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 122
  • Weight: 299 gr
  • ISBN-10: 1361357819
  • Publisher Date: 27 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 7 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Computational Imaging Technologies for Optical Lithography Extension
Open Dissertation Press -
Computational Imaging Technologies for Optical Lithography Extension
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computational Imaging Technologies for Optical Lithography Extension

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!