Buy Using Semantic Sub-Scenes to Facilitate Scene Categorization and Understanding
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Using Semantic Sub-Scenes to Facilitate Scene Categorization and Understanding
Using Semantic Sub-Scenes to Facilitate Scene Categorization and Understanding

Using Semantic Sub-Scenes to Facilitate Scene Categorization and Understanding


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Using Semantic Sub-scenes to Facilitate Scene Categorization and Understanding" by Shanshan, Zhu, 朱珊珊, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: This thesis proposes to learn the absent cognitive element in conventional scene categorization methods: sub-scenes, and use them to better categorize and understand scenes. In scene categorization, it has been observed that the problem of ambiguity occurs when treating the scene as a whole. Scene ambiguity arises from when a similar set of sub-scenes are arranged differently to compose different scenes, or when a scene literally contains several categories. However, these ambiguities can be discerned by the knowledge of sub-scenes. Thus, it is worthy to study sub-scenes and use them to better understand a scene. The proposed research firstly considers an unsupervised method to segment sub-scenes. It emphasizes on generating more integral regions instead of over-segmented regions usually produced by conventional segmentation methods. Several properties of sub-scenes are explored such as proximity grouping, area of influence, similarity and harmony based on psychological principles. These properties are formulated into constraints that are used directly in the proposed framework. A self-determined approach is employed to produce a final segmentation result based on the characteristics of each image in an unsupervised manner. The proposed method performs competitively against other state-of-the-art unsupervised segmentation methods with F-measure of 0.55, Covering of 0.51 and VoI of 1.93 in the Berkeley segmentation dataset. In the Stanford background dataset, it achieves the overlapping score of 0.566 which is higher than the score of 0.499 of the comparison method. To segment and label sub-scenes simultaneously, a supervised approach of semantic segmentation is proposed. It is developed based on a Hierarchical Conditional Random Field classification framework. The proposed method integrates contextual information into the model to improve classification performance. Contextual information including global consistency and spatial context are considered in the proposed method. Global consistency is developed based on generalizing the scene by scene types and spatial context takes the spatial relationship into account. The proposed method improves semantic segmentation by boosting more logical class combinations. It achieves the best score in the MSRC-21 dataset with global accuracy at 87% and the average accuracy at 81%, which out-performs all other state-of-the-art methods by 4% individually. In the Stanford background dataset, it achieves global accuracy at 80.5% and average accuracy at 71.8%, also out-performs other methods by 2%. Finally, the proposed research incorporates sub-scenes into the scene categorization framework to improve categorization performance, especially in ambiguity cases. The proposed method encodes the sub-scene in the way that their spatial information is also considered. Sub-scene descriptor compensates the global descriptor of a scene by evaluating local features with specific geometric attributes. The proposed method obtains an average categorization accuracy of 92.26% in the 8 Scene Category dataset, which outperforms all other published methods by over 2% of improvement. It evaluates ambiguity cases more accurately by discerning which part exemplifies a scene category and how those categories are organized. DOI: 10.5353/th_b5317047 Subjects: Image processing - Digital techniques


Best Sellers


Product Details
  • ISBN-13: 9781361348598
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 204
  • Weight: 485 gr
  • ISBN-10: 1361348593
  • Publisher Date: 27 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 11 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Using Semantic Sub-Scenes to Facilitate Scene Categorization and Understanding
Open Dissertation Press -
Using Semantic Sub-Scenes to Facilitate Scene Categorization and Understanding
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Using Semantic Sub-Scenes to Facilitate Scene Categorization and Understanding

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!