Buy Topological Theory of Gapless and Gapped Fermionic Systems
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Topological Theory of Gapless and Gapped Fermionic Systems
Topological Theory of Gapless and Gapped Fermionic Systems

Topological Theory of Gapless and Gapped Fermionic Systems


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Topological Theory of Gapless and Gapped Fermionic Systems" by Yuxin, Zhao, 趙宇心, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Recently the discoveries of graphene, Weyl semi-metal and Dirac semi-metal are drawing more and more people's attentions back to the topological characteristics of Fermi surfaces, which may be tracked back to the pair of Weyl points observed experimentally in the phase A of Helium three in 80s in the last century. Based on the pioneer works by Volovik and Hořava, we classify all kinds of Fermi surfaces with respect to anti-unitary symmetries and codimensions of Fermi surfaces. The first chapter of this thesis is attributed to develop symmetry-dependent topological invariants to characterize topological properties of Fermi surfaces, and map out the periodic classification tables of Fermi surfaces. Compared with the existing classification of topological insulators (TIs) and superconductors (TSCs), it is observed that there exists a two-step dimension shift from our classification of Fermi surfaces. Actually the two classifications can both be derived rigorously in the framework of K-theory, a mathematical algebraic topology theory for stable fiber bundles, where the dimension shift can also be derived rigorously by constructing maps between Fermi surfaces and TIs/TSCs. This unified treatment of the two classifications is of mathematical elegance, even providing us deeper understandings of these topological phenomena, and is the subject of chapter II of this thesis. In the beginning of chapter III, when applying our theory of topological Fermi surfaces on the boundary of TIs/TSCs, a general index theory is conjectured describing a faithful boundary-bulk correspondence of TIs/TSCs, which is motivated by the dimension shift in the two classifications. Then we construct all kinds of TIs/TSCs and Fermi surfaces by Dirac matrices, which is actually a physical interpretation of the Atiyah-Bott-Shapiro construction as a mathematical theory, and provides us a rigorous proof of our general index theorem. We also provide applications of our theory and its connections to nonlinear sigma models of disordered systems. The last chapter of this thesis may be regarded as a collection of applications of the boundary-bulk correspondence described by the general index theorem for spatially one-dimensional systems. Specifically one-dimensional superconductor models in the other three nontrivial cases are constructed as generalizations of the Kitaev's model that is one of four nontrivial cases, and every model is solved in detail by methods similar to that provided by Kitaev. Then we analyze each model in the framework of the general index theorem, focusing on the topological properties of Majorana zero-modes with codimension zero at the ends of these models under the open boundary condition. The possible applications of these models to universal quantum manipulations are also discussed. DOI: 10.5353/th_b5312335 Subjects: Fermions


Best Sellers


Product Details
  • ISBN-13: 9781361346679
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 130
  • Weight: 318 gr
  • ISBN-10: 1361346671
  • Publisher Date: 27 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 7 mm
  • Width: 216 mm

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Topological Theory of Gapless and Gapped Fermionic Systems
Open Dissertation Press -
Topological Theory of Gapless and Gapped Fermionic Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Topological Theory of Gapless and Gapped Fermionic Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!