Load-Balanced Switch Design and Data Center Networking
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Load-Balanced Switch Design and Data Center Networking
Load-Balanced Switch Design and Data Center Networking

Load-Balanced Switch Design and Data Center Networking


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Load-balanced Switch Design and Data Center Networking" by Chunzhi, He, 何春志, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: High-speed routers and high-performance data centers share a common system-level architecture in which multiple processing nodes are connected by an interconnection network for high-speed communications. Load balancing is an important technique for maximizing throughput and minimizing delay of the interconnection network. In this thesis, efficient load balancing schemes are designed and analyzed for next-generation routers and data centers. In high-speed router design, two preferred switch architectures are input-queued switch and load-balanced switch. In an input-queued switch, time-domain load balancing can be carried out by an iterative algorithm that schedules packets for sending in different time slots. The complexity of an iterative algorithm increases rapidly with the number of scheduling iterations. To address this problem, a single-iteration scheduling algorithm called D-LQF is designed, in which exhaustive service policy is adopted for reusing the matched input-output pairs in the previous time slots to grow the match size. Unlike an input-queued switch, a load-balanced switch consists of two stages of crossbar switch fabrics, where load balancing is carried out in both time and space domains. Among various load-balanced switches, the feedback-based switch gives the best delay-throughput performance. In this thesis, the feedback-based switch is enhanced in three aspects. Firstly, we focus on reducing its switch fabric complexity. Instead of using crossbars, a dual-banyan network is proposed. The complexity of dual-banyan can be further reduced by merging the two banyans to form a Clos network, resulting in a Clos-banyan network. Secondly, we target at improving the delay performance of the feedback-based switch. A Clos-feedback switch architecture is devised where each switch module in the Clos network is a small feedback-based switch. With application-flow based load balancing, packet order is ensured and the average packet delay is reduced from O(N) to O(n), where N and n are the switch and switch module sizes, respectively. Thirdly, we extend the feedback-based switch to support multicast traffic. Based on the notion of pointer-based multicast VOQ, an efficient multicast scheduling algorithm with packet replication at the middle-stage ports only is proposed. In order to provide close-to-100% throughput for any admissible multicast traffic patterns, a three-stage implementation of feedback-based switch is also designed. In designing load balancing schemes for data centers, we focus on the most popular fat-tree based data centers. Notably, packet-based load balancing is widely considered infeasible for data centers. This is because the associated packet out-of-order problem will cause unnecessary TCP fast retransmits, and as a result, severely undermine TCP performance. In this thesis, we show that if packet-based load balancing is performed properly, the packet out-of-order problem can be easily addressed by slightly increasing the number of duplicate ACKs required for triggering fast retransmit. Admittedly, in case of a real packet loss, the loss recovery time will be increased. But our simulation results show that such an increase is far less than the reduction in the network queueing delay (due to a better load-balanced network). As compared to a flow-based load balancing scheme, our packet-based scheme consistently provides significantly higher goodput and noticeably smaller


Best Sellers


Product Details
  • ISBN-13: 9781361342534
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 192
  • Weight: 458 gr
  • ISBN-10: 1361342536
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 10 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Load-Balanced Switch Design and Data Center Networking
Open Dissertation Press -
Load-Balanced Switch Design and Data Center Networking
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Load-Balanced Switch Design and Data Center Networking

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!