Dynamic Compression and Exogenous Fibronectin Regulates Cell-Matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Mechanical engineering > Dynamic Compression and Exogenous Fibronectin Regulates Cell-Matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment
Dynamic Compression and Exogenous Fibronectin Regulates Cell-Matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment

Dynamic Compression and Exogenous Fibronectin Regulates Cell-Matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Dynamic Compression and Exogenous Fibronectin Regulates Cell-matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment" by Chuen-wai, Li, 李鑽偉, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The fundamental principle of tissue engineering is to use appropriate cell source, combined with scaffolds and bioactive factors to develop tissue constructs which restore, maintain or improve tissue function. There is increasing data emphasizing the importance of mechanical signals and extracellular matrix (ECM) proteins presented by the scaffold in determining stem cell fate/functions which are critical to tissue construct maturation and success of stem cell-based therapies. Cell-matrix adhesions are one of the major mechanosensing machineries cells use to convert information provided by ECM ligands and mechanical signals presented by scaffolds into intracellular biochemical signaling cascades which lead to particular functional responses. Therefore, understanding how ECM ligands and mechanical signals regulate cell-matrix adhesion formation and activation of associated intracellular signaling proteins is fundamental to rational design of biomaterial and loading protocol for optimal cell functional responses in tissue constructs. In this study, we attempted to understand the regulatory effects of external mechanical signal and exogenous ECM protein on cell-matrix adhesion formation and associated intracellular signaling proteins of human mesenhymal stem cells, and in particular, to test the hypothesis that mechanical stimulation or exogenous ECM protein can lead to adhesion maturation into 3D-matrix adhesions in 3D collagen environment. We used microencapsulation technique to embed cells in 3D collagen environment, forming disc-shaped hMSC-collagen constructs. By immunofluorescent staining and confocal microscopy, we visualized changes in size, morphologies and molecular composition of the adhesions. First of all, 2D adhesions of hMSCs were characterized. We showed that hMSCs form well-organized αv integrin-based focal adhesions and fibrillar adhesions in 2D culture. To investigate the regulatory effects of mechanical signals on adhesion signaling and maturation, we used micromanipulator-based loading device to impose dynamic compression to hMSC-collagen constructs. We found that dynamic compression lead to enlargement of integrin αv adhesions which recruit focal adhesion kinase (FAK), vinculin and extracellular signal-regulated kinase (ERK). In addition, FAK was activated at enlarged integrin αv adhesions and translocated to peri-nuclear region after compression, suggesting that loading induces activation of FAK signaling pathways through increased integrin αv clustering. Moreover, we demonstrated that dynamic compression can induce 3D-matrix adhesion formation, indicating the role of external force in integrin α5-based adhesion maturation in 3D collagen environment. We explored the effect of exogenous ECM proteins on adhesion maturation of hMSCs by adding fibronectin into cell-collagen mixture during fabrication of collagen constructs. Our results demonstrated that the exogenous fibronectin can induce α5 integrin-based adhesion maturation into 3D-matrix adhesions in our collagen constructs in a dose-dependent manner. This study demonstrated that the effect of external mechanical signals and exogenous ECM ligands on adhesion signaling and maturation of hMSCs in 3D collagen environment. Our findings contribute towards mechanobiology of hMSCs in 3D context. I


Best Sellers


Product Details
  • ISBN-13: 9781361341100
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 172
  • Weight: 689 gr
  • ISBN-10: 1361341106
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 11 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Dynamic Compression and Exogenous Fibronectin Regulates Cell-Matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment
Open Dissertation Press -
Dynamic Compression and Exogenous Fibronectin Regulates Cell-Matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Dynamic Compression and Exogenous Fibronectin Regulates Cell-Matrix Adhesions and Intracellular Signaling Proteins of Human Mesenchymal Stem Cells in 3D Collagen Environment

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!