Buy Structural and Functional Studies of Human Appl1-Appl2 Bar-PH Heterodimer, Appl2 Bar-PH Homodimer, and Lanthionine Synthetase Component C-Like Protein 2
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Medicine & Health Science textbooks > Pre-clinical medicine: basic sciences > Physiology > Structural and Functional Studies of Human Appl1-Appl2 Bar-PH Heterodimer, Appl2 Bar-PH Homodimer, and Lanthionine Synthetase Component C-Like Protein 2
Structural and Functional Studies of Human Appl1-Appl2 Bar-PH Heterodimer, Appl2 Bar-PH Homodimer, and Lanthionine Synthetase Component C-Like Protein 2

Structural and Functional Studies of Human Appl1-Appl2 Bar-PH Heterodimer, Appl2 Bar-PH Homodimer, and Lanthionine Synthetase Component C-Like Protein 2


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Structural and Functional Studies of Human APPL1-APPL2 BAR-PH Heterodimer, APPL2 BAR-PH Homodimer, and Lanthionine Synthetase Component C-like Protein 2" by Yujie, Chen, 陈宇杰, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: APPL BAR-PH heterodimer and APPL2 BAR-PH homodimer The APPL (Adaptor protein containing PH domain, PTB domain and Leucine zipper) family are adaptor proteins with only two isoforms, APPL1 and APPL2. They bind to early endosomes with a small GTPase, Rab5, and mediate the interactions between various receptors and downstream signaling components, thus functioning in many signaling pathways evoked by adiponectin, insulin, FSH, EGF, and so on. However, evidences have shown APPL1 and APPL2 should perform some opposite functions, which cannot be simply explained by the functional differences attributed to their PTB domains. We hypothesize that the heterodimerization of APPL1 and APPL2's BAR domains may account for their opposing functions. The crystal structure of APPL BAR-PH heterodimer was solved to resolution 2.8 A. Its overall structure exhibits crescent shape with a larger curvature radius of 76 A, compared to 55 A of the APPL1 BAR-PH homodimer. And the crystal structure APPL2 BAR-PH homodimer was solve to resolution 3.3 A. The overall structure of APPL2 BAR-PH homodimer is very similar to that of APPL BAR-PH heterodimer, but shows greater difference in curvature to the APPL1 BAR-PH homodimer structure. The concave side of APPL BAR-PH heterodimer and APPL2 BAR-PH homodimer all possess less positive charge than the APPL1 BAR-PH homodimer. Structural analysis reveals that leucine patches at the dimer interface may account for the formation of dimeric curve with certain curvature. Consequently, APPL2 BAR is able to enforce the curvature reduction to APPL1 BAR upon heterodimerization. In conclusion, the alterations of curvature and electrostasis are responsible for the modulation of endosome binding specificity and can elucidate the opposite roles of APPL1 and APPL2. LanCL2 LanCL2 is a member of Lanthionine synthetase component C-like family. In human, LanCL2 binds to lanthionine derivatives and glutathione, participating in keeping intracellular reducing state. By binding to absiscic acid (ABA), LanCL2 is indispensible for the ABA-stimulated adipogenesis, insulin release, glucose homeostasis, and inflammatory response. It is also implicated in anticancer drug resistance. All these functions underscore the importance of LanCL2 in the diseases like diabetes, inflammation, and cancer. The crystal structure of LanCL2 was solved to resolution 1.8 A. The overall structure displays canonical double-layer α-barrel. The major differences from LanCL1 lay in the loops on the barrel top, which are implicated in various substrate bindings. A zinc-coordinating pocket was found among the loops, with conserved amino acid residues of distinct conformation. The electrostatic surface shows remarkable differences compared to that of LanCL1, suggesting that it may contribute to distinct substrate binding profile. Future implications APPL proteins and LanCL proteins are all involved in the regulation of metabolism, such as glucose uptake, fatty acid oxidation, and insulin secretion, and play roles in diseases like obesity and type 2 diabete. Structural and functional studies of these proteins can provide insights into the molecular mechanisms and clues for related therapeutic approaches. DOI: 10.5353/th_b5043419 Subjects: Carrier proteins Cellular signal transduction


Best Sellers


Product Details
  • ISBN-13: 9781361339121
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 142
  • Weight: 621 gr
  • ISBN-10: 1361339128
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 10 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Structural and Functional Studies of Human Appl1-Appl2 Bar-PH Heterodimer, Appl2 Bar-PH Homodimer, and Lanthionine Synthetase Component C-Like Protein 2
Open Dissertation Press -
Structural and Functional Studies of Human Appl1-Appl2 Bar-PH Heterodimer, Appl2 Bar-PH Homodimer, and Lanthionine Synthetase Component C-Like Protein 2
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Structural and Functional Studies of Human Appl1-Appl2 Bar-PH Heterodimer, Appl2 Bar-PH Homodimer, and Lanthionine Synthetase Component C-Like Protein 2

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!