Buy Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi2se3 Thin Films
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films
Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films

Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂Se₃ Thin Films" by Xin, Guo, 郭欣, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In this thesis, molecular-beam epitaxy (MBE) of three-dimensional (3D) topological insulator (TI) Bi_2 Se_3 thin films on different substrates is presented. The substrates experimented include InP(111)A, GaAs(111)A, InP(001) and GaAs(001). Multiple characterization techniques are employed to investigate the film's structural, morphological and electrical properties. To facilitate growth of high quality epitaxial Bi_2 Se_3, thermal treatment of the substrate surfaceturnsout to be crucial for both InP(001) and InP(111). On the other hand, for high-index epitaxial Bi_2 Se_3 growth on GaAs(001), the In_2 Se_3 buffer layer has to be employed. Twin defects in epitaxial Bi_2 Se_3 (111) thin films on hexagonal substrates have been found inevitable in the past. In this study, however, such defects are successfully suppressed on InP(111)A and GaAs(111)Asubstrates, as evidenced in electron diffraction and morphological measurements. The prerequisite for the twin-free Bi_2 Se_3 (111) epitaxy appears to be the step-flow growth mode on the purposely treated stepped substrate surfaces, where deposits incorporate in film at step edges. The lattice of InP or GaAs substrate then plays a guiding role for epitaxial Bi_2 Se_3. Twin suppression is also seen to occur for growth on vicinal and islanded InP(111)A substrate, where a high density of steps inherently exists on surface. Transport studies on such single-domain Bi2Se3epifilms show superior electronic characteristics when compared to those of twinned films grown on, e.g., Si(111). The Shubnikov-de Haas (SdH)oscillations due to bulk state Landau quantization are observed in the magnetoresistance (MR) measurements of Bi_2 Se_3films grown on InP(111)A. So far, a majority of experimental work of 3D TIs is exclusively on the (111) surfaces, primarily due to the ease to obtain such a surface by cleavage or by growth. On the other hand, for strong topological insulator, nontrivial surface states are expected to exist on other surfaces as well, which remain to be experimentally confirmed. In this study, a high-index epitaxial Bi_2 Se_3is achieved by epitaxial growth on facetted InP(001) substrate. The latter is obtained by a cautious thermal treatment of the substrate wafer under Se flux, where the rhombohedral In_2 Se_3buffer layer forms, facilitating the growth of Bi_2 Se_3 (221) film.Such a high index Bi_2 Se_3 film is evidenced by low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD) measurements. The unique strapped morphology on Bi_2 Se_3 (221) surface is revealed by scanning tunneling microscopy (STM). Angle-resolved photoemission spectroscopy (ARPES) measurements unambiguously show the Dirac surface states elucidating the 3D topological nature ofBi_2 Se_3. Significantly, constant energy plot shows an anisotropic Fermi surface, being ofellipticalshape, which qualitatively agrees with the theoretical calculation. Transport studies of such Bi_2 Se_3(221) films reveal the ratio of conductivities along directions parallel and transverse the van der Waals (vdW) gaps to be as high as 4.4. DOI: 10.5353/th_b5153683 Subjects: Molecular beam epitaxy Thin films


Best Sellers


Product Details
  • ISBN-13: 9781361331736
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 204
  • Weight: 485 gr
  • ISBN-10: 1361331739
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 11 mm
  • Width: 216 mm

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films
Open Dissertation Press -
Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!