Functional Characterization of a Sorghum Simple Extracellular Leucine-Rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > History and Archaeology > History > Functional Characterization of a Sorghum Simple Extracellular Leucine-Rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis
Functional Characterization of a Sorghum Simple Extracellular Leucine-Rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis

Functional Characterization of a Sorghum Simple Extracellular Leucine-Rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Functional Characterization of a Sorghum Simple Extracellular Leucine-rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis" by Fuyuan, Zhu, 朱福远, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: A sorghum gene SbLRR2, which is predicted to encode a simple extracellular leucine-rich repeat (LRR) protein, was previously isolated among a collection of fungal pathogen-induced sorghum cDNA clones generated by suppression subtractive hybridization. Phylogenetic analysis revealed that they are distinct from the simple extracellular LRR proteins reported previously. Subcellular localization analysis demonstrated that the SbLRR2-EYFP fusion protein was targeted to the extracellular space in tobacco leaf cells. Peptide N-Glycosidase F treatment revealed that the SbLRR2 is N-glycosylated with non-fucosylated oligosaccharides when transiently expressed in Nicotiana benthamiana leaves. Functional analysis was performed in SbLRR2 over-expression (OE) Arabidopsis plants which showed enhanced resistance against the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola. In addition, the OE lines were found to have elevated expression of several jasmonate acid (JA)-associated genes and higher endogenous JA contents. Hence, the SbLRR2-mediated defense responses in transgenic Arabidopsis are likely to be dependent on JA-signaling through increased JA production. On the other hand, the OE lines remained susceptible to Pseudomonas syringae pv. tomato as the wild type plants. Consistently, there was no up-regulation of salicylic acid (SA) defense marker gene expression or SA levels in the OE lines. Using yeast two-hybrid analysis, SbLRR2 was further shown to interact with Arabidopsis hypersensitive-induced response protein 1. Such interaction may suppress hypersensitive response which is known to enhance necrotrophic pathogen invasion. These data suggested a positive regulatory role of SbLRR2 in plant defense. Further phenotypic analysis of transgenic SbLRR2 revealed its novel role in enhancing lead [Pb(II)] tolerance in Arabidopsis. OE-lines were showed to alleviate Pb(II)-induced root inhibition, reduce the accumulation of Pb(II), and enhance transcription of AtPDR12 which was previously shown to function as a potential Pb(II) efflux pump contributing to Pb(II) detoxification. However, all the Pb(II) tolerance responses were abolished when SbLRR2 was transformed into the atpdr12 mutant. Meanwhile, the extracellular localization of SbLRR2 was shown to be essential for the enhanced Pb(II) tolerance in transgenic Arabidopsis. Together, these results indicated that SbLRR2-mediated Pb(II) tolerance was dependent on AtPDR12 via Pb(II) extrusion. Further investigations revealed the Pb(II)-induced transcriptional activation of SbLRR2 and several highly conserved AtPDR12 homologs in sorghum seedlings, suggesting the possibilities of a common molecular mechanism for Pb(II) tolerance in diverse plant species. Finally, an iTRAQ-based LC-MS/MS quantitative proteomics approach was used to investigate of lead responses in Arabidopsis. A total of 114 proteins showed significant changes in protein abundance with 58 up-regulated and 56 down-regulated proteins. Analysis of changes in the protein profile revealed that the photosynthesis, photorespiration and protein biosynthesis in Arabidopsis were inhibited under lead toxicity. On the other hand, abundances of proteins involved in the antioxidant system, glucosinolate-myrosinase system and JA biosynthesis pathway were elevated upon Pb(II) treatment. Further investigation revealed


Best Sellers


Product Details
  • ISBN-13: 9781361331491
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 216
  • Weight: 513 gr
  • ISBN-10: 1361331496
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 12 mm
  • Width: 216 mm

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Functional Characterization of a Sorghum Simple Extracellular Leucine-Rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis
Open Dissertation Press -
Functional Characterization of a Sorghum Simple Extracellular Leucine-Rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Functional Characterization of a Sorghum Simple Extracellular Leucine-Rich Repeat Protein and Proteomic Investigations of Lead Response in Arabidopsis

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!