Buy Theoretical Study of Electronic Properties in Strontium Ruthenate
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Theoretical Study of Electronic Properties in Strontium Ruthenate
Theoretical Study of Electronic Properties in Strontium Ruthenate

Theoretical Study of Electronic Properties in Strontium Ruthenate


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Theoretical Study of Electronic Properties in Strontium Ruthenate" by Jiawei, Huo, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Since the discovery of superconductivity in Sr2RuO4, there has been intense research interest and efforts on its unconventional pairing symmetry. Although its normal state can be qualitatively described as a quasi-two-dimensional Fermi liquid, surprisingly, Sr2RuO4 turns out to be the prime candidate of the chiral p + ip superconductor, analogous to 3He-A. Such a state is of great interest surrounding, since under a certain conditions it hosts such exotic objects as half-quantum vortices and Majorana bound states, one possible route to an enigmatic quantum computer. Nevertheless, although it is well established now that this superconducting state has odd-parity, and most likely breaks time-reversal symmetry, the negative result on the search of edge current is one of the critical challenges to its chiral p-wave order. These serious discrepancies have even triggered a debate on the primary source of its superconductivity. Motivated by this debate, in this thesis we propose two independent methods to resolve this controversy via "smoking-gun" experiments. First, the vortex structure within the single-band and two-band models is studied within a mean-field theory. The pattern of the local density-of-state at zero bias shows significant anisotropy in the two-band model, while it is nearly isotropic in the single-band case. Also, the spin lattice relaxation rate at the vortex site is greatly enhanced in the single-band case but not in the two-band scenario. These important distinctions stem from the topology of different Fermi surfaces, and can be tested by using standard probes such as scanning tunneling microscope and nuclear magnetic resonance. In the second proposal, we focus on the two-band scenario, and apply a renormalization group theory to explain the form of spin density wave fluctuations. This theory not only reconciles the absence of long range spin density wave order with strongly enhanced fluctuations, but also unveils the mutual exclusion of these fluctuations and p-wave superconducting pairing. Such an exclusion is reflected in the suppression of the spin-spin correlation function at low energies, which can be measured in the inelastic neutron scattering experiment. This suppression, if not observed experimentally, would be a critical challenge to the two-band model, and an indirect but strong support to the assignment of the single γ-band as the primary source of the unconventional pairing. DOI: 10.5353/th_b5066213 Subjects: Strontium compounds - Electric properties


Best Sellers


Product Details
  • ISBN-13: 9781361321966
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • Weight: 272 gr
  • ISBN-10: 1361321962
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Spine Width: 6 mm
  • Width: 216 mm

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Theoretical Study of Electronic Properties in Strontium Ruthenate
Open Dissertation Press -
Theoretical Study of Electronic Properties in Strontium Ruthenate
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Theoretical Study of Electronic Properties in Strontium Ruthenate

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!