Magnetic Resonance Diffusion Characterization of Brain Diseases
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Magnetic Resonance Diffusion Characterization of Brain Diseases
Magnetic Resonance Diffusion Characterization of Brain Diseases

Magnetic Resonance Diffusion Characterization of Brain Diseases


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Magnetic Resonance Diffusion Characterization of Brain Diseases" by 丁莹, Ying, Ding, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Magnetic resonance imaging (MRI) is a valuable imaging technique. It provides excellent soft tissue contrast and multi-parametric non-invasive imaging protocols. Among those various techniques, diffusion MRI measures the water diffusion properties of biological tissue. It is a useful tool in characterizing various brain tissue microstructures quantitatively. With its rapid development, it is emerging that subtle changes can be probed by diffusion tensor imaging (DTI) quantitation. The objectives of this doctoral work are to access the subtle microstructural alterations in rodent brains due to hemodynamic changes, fear conditioning and sleep deprivation using in vivo DTI. With the improved reproducibility and specificity achieved by using advanced post-processing and animal preparation procedures, in vivo DTI is expected to be useful to explore the underlying biological mechanisms for posttraumatic stress disorder and memory deficit following sleep loss in human. Firstly, as DTI could be influenced by the presence of water molecules in brain vasculature, for better understand the reproducibility and sensitivity of in vivo DTI measurements, conventional DTI protocol was applied to a well-controlled rat model of hypercapnia. Our data demonstrated that diffusivities increased in whole brain, gray and white matter regions in response to hypercapnia. These results indicate that in vivo DTI quantitation in brain can be interfered by vascular factors on the order of few percents. Cautions should be taken in designing and interpreting quantitative DTI studies as all DTI indices can be potentially confounded by physiologic conditions, cerebrovascular and hemodynamic characteristics. Secondly, recent DTI studies have shown detection of long-term neural plasticity weeks to months following relatively extensive periods of training in animals. However, rapid plasticity within a short period (24 hours) after learning is important for observing the time course of training-evoked changes and narrow down candidate mechanisms. Fear conditioning (FC), which typically occurs over a short timescale (in minutes), was selected as a paradigm for investigation. Using voxel-wise repeated measures analysis, FA was found to increase in amygdala and decrease in hippocampus 1-hour post-FC, and it reversed in both regions 1-day post-FC. Results indicate that DTI can detect rapid microstructural changes in brain regions known to mediate fear conditioning in vivo. DTI indices could be explored as a translational tool to capture potential early biological changes in individuals at risk for developing post-traumatic stress disorder. Thirdly, in vivo DTI was employed to access regional specific microstructural changes following rapid eye movement sleep deprivation (SD), and explore possible temporal differentiation of these changes. With voxel-base analysis, MD is found to decrease in post-SD time points in bilateral hippocampi and cerebral cortex. The distributions of these clusters exhibited differentiable layer specific patterns, which were pointing to dentate gyrus and CA1 layer in hippocampus, and parietal cortex and barrel field layers in cerebral cortex. Results indicate that in vivo DTI is capable to detect microstructural changes in specific layers and reveal temporal distinction between them. These specific layers are possibly more susceptible to sleep loss, and the temporal distinction of changes between these


Best Sellers


Product Details
  • ISBN-13: 9781361304877
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 116
  • Weight: 286 gr
  • ISBN-10: 1361304871
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 6 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Magnetic Resonance Diffusion Characterization of Brain Diseases
Open Dissertation Press -
Magnetic Resonance Diffusion Characterization of Brain Diseases
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Magnetic Resonance Diffusion Characterization of Brain Diseases

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!