Buy Run-Time Loop Parallelization with Efficient Dependency Checking on Gpu-Accelerated Platforms
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Run-Time Loop Parallelization with Efficient Dependency Checking on Gpu-Accelerated Platforms
Run-Time Loop Parallelization with Efficient Dependency Checking on Gpu-Accelerated Platforms

Run-Time Loop Parallelization with Efficient Dependency Checking on Gpu-Accelerated Platforms


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Run-time Loop Parallelization With Efficient Dependency Checking on GPU-accelerated Platforms" by Chenggang, Zhang, 张呈刚, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: General-Purpose computing on Graphics Processing Units (GPGPU) has attracted a lot of attention recently. Exciting results have been reported in using GPUs to accelerate applications in various domains such as scientific simulations, data mining, bio-informatics and computational finance. However, up to now GPUs can only accelerate data-parallel loops with statically analyzable parallelism. Loops with dynamic parallelism (e.g., with array accesses through subscripted subscripts), an important pattern in many general-purpose applications, cannot be parallelized on GPUs using existing technologies. Run-time loop parallelization using Thread Level Speculation (TLS) has been proposed in the literatures to parallelize loops with statically un-analyzable dependencies. However, most of the existing TLS systems are designed for multiprocessor/multi-core CPUs. GPUs have fundamental differences with CPUs in both hardware architecture and execution model, making the previous TLS designs not work or inefficient when ported to GPUs. This thesis presents GPUTLS, a runtime system designed to support speculative loop parallelization on GPUs. The design of GPU-TLS addresses several key problems encountered when adapting TLS to GPUs: (1) To reduce the possibility of mis-speculation, deferred-update memory versioning scheme is adopted to avoid mis-speculations caused by inter-iteration WAR and WAW dependencies. A technique named intra-warp value forwarding is proposed to respect some inter-iteration RAW dependencies, which further reduces the mis-speculation possibility. (2) An incremental speculative execution scheme is designed to exploit partial parallelism within loops. This avoids excessive re-executions and reduces the mis-speculation penalty. (3) The dependency checking among thousands of speculative GPU threads poses large overhead and can easily become the performance bottleneck. To lower the overhead, we design several e_cient dependency checking schemes named PRW+BDC, SW, SR, SRW+EDC, and SRW+LDC respectively. (4) We devise a novel parallel commit scheme to avoid the overhead incurred by the serial commit phase in most existing TLS designs. We have carried out extensive experiments on two platforms with different NVIDIA GPUs, using both a synthetic loop that can simulate loops with different characteristics and several loops from real-life applications. Testing results show that the proposed intra-warp value forwarding and eager dependency checking techniques can improve the performance for almost all kinds of loop patterns. We observe that compared with other dependency checking schemes, SR and SW can achieve better performance in most cases. It is also shown that the proposed parallel commit scheme is especially useful for loops with large write set size and small number of inter-iteration WAW dependencies. Overall, GPU-TLS can achieve speedups ranging from 5 to 105 for loops with dynamic parallelism. DOI: 10.5353/th_b4716765 Subjects: Graphics processing units Parallel processing (Electronic computers) Threads (Computer programs)


Best Sellers


Product Details
  • ISBN-13: 9781361302309
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 184
  • Weight: 721 gr
  • ISBN-10: 1361302305
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 13 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Run-Time Loop Parallelization with Efficient Dependency Checking on Gpu-Accelerated Platforms
Open Dissertation Press -
Run-Time Loop Parallelization with Efficient Dependency Checking on Gpu-Accelerated Platforms
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Run-Time Loop Parallelization with Efficient Dependency Checking on Gpu-Accelerated Platforms

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!