Bayesian Analysis in Markov Regime-Switching Models
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Bayesian Analysis in Markov Regime-Switching Models
Bayesian Analysis in Markov Regime-Switching Models

Bayesian Analysis in Markov Regime-Switching Models


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Bayesian Analysis in Markov Regime-switching Models" by You Beng, Koh, 辜有明, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: van Norden and Schaller (1996) develop a standard regime-switching model to study stock market crashes. In their seminal paper, they use the maximum likelihood estimation to estimate the model parameters and show that a two-regime speculative bubble model has significant explanatory power for stock market returns in some observed periods. However, it is well known that the maximum likelihood estimation can lead to bias if the model contains multiple local maximum points or the estimation starts with poor initial values. Therefore, a better approach to estimate the parameters in the regime-switching models is to be found. One possible way is the Bayesian Gibbs-sampling approach, where its advantages are well discussed in Albert and Chib (1993). In this thesis, the Bayesian Gibbs-sampling estimation is examined by using two U.S. stock datasets: CRSP monthly value-weighted index from Jan 1926 to Dec 2010 and S&P 500 index from Jan 1871 to Dec 2010. It is found that the Gibbs-sampling estimation explains the U.S. data better than the maximum likelihood estimation. Moreover, the existing standard regime-switching speculative behaviour model is extended by considering the time-varying transition probabilities which are governed by the first-order Markov chain. It is shown that the time-varying first-order transition probabilities of Markov regime-switching speculative rational bubbles can lead stock market returns to have a second-order Markov regime. In addition, a Bayesian Gibbs-sampling algorithm is developed to estimate the parameters in the second-order two-state Markov regime-switching model. DOI: 10.5353/th_b4852164 Subjects: Bayesian statistical decision theory Markov processes


Best Sellers


Product Details
  • ISBN-13: 9781361301050
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 168
  • Weight: 404 gr
  • ISBN-10: 1361301058
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 9 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Analysis in Markov Regime-Switching Models
Open Dissertation Press -
Bayesian Analysis in Markov Regime-Switching Models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Analysis in Markov Regime-Switching Models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!