Buy Efficient Shared Object Space Support for Distributed Java Virtual Machine
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Efficient Shared Object Space Support for Distributed Java Virtual Machine
Efficient Shared Object Space Support for Distributed Java Virtual Machine

Efficient Shared Object Space Support for Distributed Java Virtual Machine


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Efficient Shared Object Space Support for Distributed Java Virtual Machine" by King-tin, Lam, 林擎天, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Given the popularity of Java, extending the standard Java virtual machine (JVM) to become cluster-aware effectively brings the vision of transparent horizontal scaling of applications to fruition. With a set of cluster-wide JVMs orchestrated as a virtually single system, thread-level parallelism in Java is no longer confined to one multiprocessor. An unmodified multithreaded Java application running on such a Distributed JVM (DJVM) can scale out transparently, tapping into the vast computing power of the cluster. While this notion creates an easy-to-use and powerful parallel programming paradigm, research on DJVMs has remained largely at the proof-of-concept stage where successes were proven using trivial scientific computing workloads only. Real-life Java applications with commercial server workloads have not been well-studied on DJVMs. Their natures including complex and sometimes huge object graphs, irregular access patterns and frequent synchronizations are key scalability hurdles. To design a scalable DJVM for real-life applications, we identify three major unsolved issues calling for a top-to-bottom overhaul of traditional systems. First, we need a more time- and space-efficient cache coherence protocol to support fine-grained object sharing over the distributed shared heap. The recent prevalence of concurrent data structures with heavy use of volatile fields has added complications to the matter. Second, previous generations of DJVMs lack true support for memory-intensive applications. While the network-wide aggregated physical memory can be huge, mutual sharing of huge object graphs like Java collections may cause nodes to eventually run out of local heap space because the cached copies of remote objects, linked by active references, can't be arbitrarily discarded. Third, thread affinity, which determines the overall communication cost, is vital to the DJVM performance. Data access locality can be improved by collocating highly-correlated threads, via dynamic thread migration. Tracking inter-thread correlations trades profiling costs for reduced object misses. Unfortunately, profiling techniques like active correlation tracking used in page-based DSMs would entail prohibitively high overheads and low accuracy when ported to fine-grained object-based DJVMs. This dissertation presents technical contributions towards all these problems. We use a dual-protocol approach to address the first problem. Synchronized (lock-based) and volatile accesses are handled by a home-based lazy release consistency (HLRC) protocol and a sequential consistency (SC) protocol respectively. The two protocols' metadata are maintained in a conflict-free, memory-efficient manner. With further techniques like hierarchical passing of lock ownerships, the overall communication overheads of fine-grained distributed object sharing are pruned to a minimal level. For the second problem, we develop a novel uncaching mechanism to safely break a huge active object graph. When a JVM instance runs low on free memory, it initiates an uncaching policy, which eagerly assigns nulls to selected reference fields, thus detaching some older or less useful cached objects from the root set for reclamation. Careful orchestration is made between uncaching, local garbage collection and the coherence protocol to avoid possible data races. Lastly, we devise lightweight sampling-based profiling methods to derive int


Best Sellers


Product Details
  • ISBN-13: 9781361290071
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 234
  • Weight: 603 gr
  • ISBN-10: 1361290072
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 12 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Efficient Shared Object Space Support for Distributed Java Virtual Machine
Open Dissertation Press -
Efficient Shared Object Space Support for Distributed Java Virtual Machine
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Efficient Shared Object Space Support for Distributed Java Virtual Machine

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!