Buy Mutual Information-Based Depth Estimation and 3D Reconstruction for Image-Based Rendering Systems
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Mutual Information-Based Depth Estimation and 3D Reconstruction for Image-Based Rendering Systems
Mutual Information-Based Depth Estimation and 3D Reconstruction for Image-Based Rendering Systems

Mutual Information-Based Depth Estimation and 3D Reconstruction for Image-Based Rendering Systems


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Mutual Information-based Depth Estimation and 3D Reconstruction for Image-based Rendering Systems" by Zhenyu, Zhu, 朱振宇, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract:   Image-based rendering (IBR) is an emerging technology for rendering photo-realistic views of scenes from a collection of densely sampled images or videos. It provides a framework for developing revolutionary virtual reality and immersive viewing systems. There has been considerable progress recently in the capturing, storage and transmission of image-based representations. This thesis proposes two image-based rendering (IBR) systems for improving the viewing freedom and environmental modeling capability of conventional static IBR systems. The first system consists of a circular array with 13 still cameras (Canon 550D) for capturing ancient Chinese artifacts at high resolution. The second one is constructed by mounting a linear array of 8 video cameras (Sony HDR-TGIE) on an electrically controllable wheel chair with its motion being controllable manually or remotely through wireless local area network (LAN) by means of additional hardware circuitry.   Both systems support object-based rendering and 3D reconstruction capability and consist of two main components. 1) A novel view synthesis algorithm using a new segmentation and mutual information (MI)-based algorithm for dense depth map estimation, which relies on segmentation, local polynomial regression (LPR)-based depth map smoothing and MI-based matching algorithm to iteratively estimate the depth map. The method is very flexible and both semi-automatic and automatic segmentation methods can be employed. They rank fourth and sixth, respectively, in the Middlebury comparison of existing depth estimation methods. This allows high quality renderings of outdoor and indoor scenes with improved mobility/freedom to be obtained. This algorithm can also be extended to object tracking. Experimental results also show that the proposed MI-based algorithms are applicable to robust registration in noisy dynamic ultrasound images. 2) A new 3D reconstruction algorithm which utilizes sequential-structure-from-motion (S-SFM) technique and the dense depth maps estimated previously. It relies on a new iterative point cloud refinement algorithm based on Kalman filter (KF) for outlier removal and the segmentation-MI-based algorithm to further refine the correspondences and the projection matrices. The mobility of our system allows us to recover more conveniently 3D model of static objects from the improved point cloud using a new robust radial basis function (RBF)-based modeling algorithm to further suppress possible outliers and generate smooth 3D meshes of objects. Moreover, a new rendering technique named view dependent texture mapping is used to enhance the final rendering effect. Experimental results show that the proposed 3D reconstruction algorithm significantly reduces the adverse effect of the outliers and produces high quality renderings using view dependent texture mapping and the model reconstructed.   Overall, this study provides a framework for designing IBR systems with improved viewing freedom and ability to cope with moving and static objects in indoor and outdoor environment.    DOI: 10.5353/th_b4832966 Subjects: Image processing - Digital techniques Three-dimensional imaging


Best Sellers


Product Details
  • ISBN-13: 9781361281697
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 146
  • Weight: 354 gr
  • ISBN-10: 1361281693
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 8 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mutual Information-Based Depth Estimation and 3D Reconstruction for Image-Based Rendering Systems
Open Dissertation Press -
Mutual Information-Based Depth Estimation and 3D Reconstruction for Image-Based Rendering Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mutual Information-Based Depth Estimation and 3D Reconstruction for Image-Based Rendering Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!