Buy Bayesian Adaptive Methods for Phase I Clinical Trials
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Bayesian Adaptive Methods for Phase I Clinical Trials
29%
Bayesian Adaptive Methods for Phase I Clinical Trials

Bayesian Adaptive Methods for Phase I Clinical Trials


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Bayesian Adaptive Methods for Phase I Clinical Trials" by Ruitao, Lin, 林瑞涛, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The primary objective of phase I dose-finding trials is to determine the maximum tolerated dose (MTD), which is typically defined as the dose with the dose-limiting toxicity probability closest to the target toxicity probability. The American Society of Clinical Oncology (ASCO) recently published an update of the ASCO policy statement to call for new phase I trial designs to allow for more efficient escalation to the therapeutic dose levels in order to cope with the changing landscape in cancer research. In this thesis, innovative and robust designs for single- or multiple-agent phase I dose-finding trials are studied. To enhance robustness and efficiency, two nonparametric methods are proposed to locate the MTD in single-agent phase I clinical trials without imposing any parametric assumption on the underlying distribution of the toxicity curve. First, a uniformly most powerful Bayesian interval (UMPBI) design is developed for dose finding, where the optimal interval is determined by the rejection region of the uniformly most powerful Bayesian test. UMPBI is easy to implement and can be nicely interpreted. Compared with existing interval designs, the proposed UMPBI design exhibits a unique feature of convergence to the MTD. Next, a nonparametric overdose control (NOC) method is proposed by casting dose finding in a Bayesian model selection framework. Each dose assignment under NOC is determined such that the posterior probability of overdosing is controlled. In addition, NOC is incorporated with a fractional imputation method to deal with late-onset toxicity outcomes. Both of the UMPBI and NOC designs are flexible, as well as possessing sound theoretical support and desirable numerical performance. In the era of precision medicine, combination therapy is playing an increasingly important role in drug development. However, drug combinations often lead to a high-dimensional dose searching space compared to conventional single-agent dose finding, especially when three or more drugs are combined for treatment. Most of the current dose-finding designs aim to quantify the toxicity probability space using certain prespecified yet complicated models. Not only do these models characterize each individual drug's toxicity profile, but they also need to quantify their interaction effects, which often leads to multi-parameter models. In order to stabilize the current practice of dose finding in drug-combination trials with limited sample sizes, a random walk Bayesian optimal interval (RW-BOIN) design and a Bootstrap aggregating continual reassessment method (Bagging CRM) are proposed. RW-BOIN is built on the basis of the single-agent BOIN design, and it can be utilized to tackle high-dimensional dose-finding problems. A convergence theorem is established to ensure the validity of RW-BOIN. On the other hand, Bagging CRM implements a dimension reduction technique and some ensemble methods in machine learning, so that the toxicity probability space can be stably reduced to a one-dimensional searching line. Simulation studies show that both RW-BOIN and Bagging CRM have comparative and robust operating characteristics compared with existing approaches under various dose-toxicity scenarios. All of the proposed methods are exemplified with real phase I dose-finding trials. Subjects: Bayesian statistical decision theory Clinical trials - Statistical methods


Best Sellers


Product Details
  • ISBN-13: 9781361043813
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 166
  • Weight: 680 gr
  • ISBN-10: 1361043814
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 11 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Adaptive Methods for Phase I Clinical Trials
Open Dissertation Press -
Bayesian Adaptive Methods for Phase I Clinical Trials
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Adaptive Methods for Phase I Clinical Trials

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!