On Construction and Identification Problems in Probabilistic Boolean Networks
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > On Construction and Identification Problems in Probabilistic Boolean Networks
On Construction and Identification Problems in Probabilistic Boolean Networks

On Construction and Identification Problems in Probabilistic Boolean Networks


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "On Construction and Identification Problems in Probabilistic Boolean Networks" by Xiaoqing, Cheng, 程晓青, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In recent decades, rapidly evolving genomic technologies provide a platform for exploring the massive amount of genomic data. At the same time, it also triggers dramatic development in systems biology. A number of mathematical models have been proposed to understand the dynamical behavior of the biological systems. Among them, Boolean Network (BN) and its stochastic extension Probabilistic Boolean Network (PBN) have attracted much attention. Identification and construction problems are two kinds of vital problems in studying the behavior of a PBN. A novel problem of observability of singleton attractors was firstly proposed, which was defined as identifying the minimum number of consecutive nodes to discriminate different singleton attractors. It may help in finding biomarkers for different disease types, thus it plays a vital role in the study of signaling networks. The observability of singleton attractor problem can be solved in O(n) time, where n is the number of genes in a BN. Later, the problem was extended to discriminating periodical attractors. For the periodical case, one has to consider multiple time steps and a new algorithm was proposed. Moreover, one may also curious about identifying the minimum set of nodes that can determine uniquely the attractor cycles from the others in the network, this problem was also addressed. In order to study realistic PBNs, inference on the structure of PBNs from gene expression time series data was investigated. The number of samples required to uniquely determine the structure of a PBN was studied. Two models were proposed to study different classes of PBNs. Using theoretical analysis and computational experiments the structure of a PBN can be exactly identified with high probability from a relatively small number of samples for some classes of PBNs having bounded indegree. Furthermore, it is shown that there exist classes of PBNs for which it is impossible to uniquely determine their structure from samples under these two models. Constructing the structure of a PBN from a given probability transition matrix is another key problem. A projection-based gradient descent method was proposed for solving huge size constrained least square problems. It is a matrixfree iterative scheme for solving the minimizer of the captured problem. A convergence analysis of the scheme is given, and the algorithm is then applied to the construction of a PBN given its probability transition matrix. Efficiency and effectiveness of the proposed method are verified through numerical experiments. Semi-tensor product approach is another powerful tool in constructing of BNs. However, to our best knowledge, there is no result on the relationship of the structure matrix and transition matrix of a BN. It is shown that the probability structure matrix and probability transition matrix are similar matrices. Three main problems in PBN were discussed afterward: dynamics, steady-state distribution and the inverse problem. Numerical examples are provided to show the validity of our proposed theory. Subjects: Algebra, Boolean Genetic regulation - Mathematical models


Best Sellers


Product Details
  • ISBN-13: 9781361040645
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 132
  • Weight: 603 gr
  • ISBN-10: 1361040645
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 10 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
On Construction and Identification Problems in Probabilistic Boolean Networks
Open Dissertation Press -
On Construction and Identification Problems in Probabilistic Boolean Networks
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

On Construction and Identification Problems in Probabilistic Boolean Networks

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!