Buy An Efficient Large-Scale Transient Electro-Thermal Field Simulator for Power Devices
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > An Efficient Large-Scale Transient Electro-Thermal Field Simulator for Power Devices
28%
An Efficient Large-Scale Transient Electro-Thermal Field Simulator for Power Devices

An Efficient Large-Scale Transient Electro-Thermal Field Simulator for Power Devices


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "An Efficient Large-scale Transient Electro-thermal Field Simulator for Power Devices" by Qinggao, Mei, 梅清高, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: With ever-decreasing device size and extensive use of energy-consuming smart devices, heat generated within devices easily leads to extremely high temperature. In return, high temperature influences electrical operational characteristics of the semiconductor devices. Therefore, it is essential for designers to predict accurate temperature and voltage/current distribution and its impact on various devices. For this purpose, coupled electro-thermal (ET) simulation is indispensable. Another concern lies in the number of matrix elements for computation, possibly millions of elements, resulting in days of heavy computation. Therefore, a fast yet accurate modeling framework of overcoming the simulation difficulty is required. In this dissertation, a new transient electro-thermal simulation method for fast 3D chip-level analysis of power devices with field solver accuracy is proposed. The metallization stack and substrate are meshed and solved with 3D field solver using nonlinear temperature-dependent electrical and thermal parameters, and the active transistors are modeled with table models to avoid time-consuming TCAD simulation. Three main contributions are made to enhance physical relevance and computational performance. First, both implicit loose and tight coupling schemes are introduced to compare their computational performances under different coupling degrees. Also, their complexity analysis is presented. Second, the capacitive effects, including interconnect parasitic capacitance and gate capacitance of power devices with nonlinear dependence on bias and temperature, are explicitly accounted for. The inclusion of capacitive effects allows accurate modeling of devices with large numbers of transistor fingers and high frequency application. Third, a specialized nonlinear exponential integrator (EI) method is developed to address the considerably different time scales between electrical and thermal sectors. The EI-based transient solver allows the electrical system to step with much larger time step size than in conventional methods, thus the time step size gap between the electrical and the thermal simulation is largely reduced. Its benefits of scalability, adaptivity and accuracy are also demonstrated in the dissertation. Subjects: Power semiconductors


Best Sellers


Product Details
  • ISBN-13: 9781361025307
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 76
  • Weight: 472 gr
  • ISBN-10: 1361025301
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 6 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
An Efficient Large-Scale Transient Electro-Thermal Field Simulator for Power Devices
Open Dissertation Press -
An Efficient Large-Scale Transient Electro-Thermal Field Simulator for Power Devices
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

An Efficient Large-Scale Transient Electro-Thermal Field Simulator for Power Devices

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!