Buy Queries and Analysis Tasks on Semantically Rich Spatial Data
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Queries and Analysis Tasks on Semantically Rich Spatial Data
Queries and Analysis Tasks on Semantically Rich Spatial Data

Queries and Analysis Tasks on Semantically Rich Spatial Data


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Queries and Analysis Tasks on Semantically Rich Spatial Data" by Jieming, Shi, 石杰明, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Semantically rich spatial data are big and ubiquitous, raising challenges with respect to their effective and efficient querying and analysis. In particular, traditional spatial analysis and querying methods are not readily applicable due to the increased data complexity. Toward addressing these challenges and supporting real-life applications that manage such data, in this thesis, three problems on the querying and analysis of (i) geo-social network data, (ii) spatio-textual data, and (iii) spatial RDF data are proposed and studied. First, we study the problem of Density-based Clustering of Places in Geo-Social networks (DCPGS). Current spatial clustering models disregard information about the people who are related to the clustered places. We extend the density-based clustering paradigm to apply on places in geo-social networks, considering both the spatial information between places and the social relationships between users who visit the places. After formally defining our model and the distance measure it relies on, we present efficient index-based algorithms for its implementation. We evaluate the effectiveness of our model via a case study and two quantitative measures, called social entropy and community score, which indicate that geo-social clusters have special properties and cannot be found by applying simple spatial clustering approaches. The efficiency of our algorithms is also evaluated experimentally. Next, we study the modeling and evaluation of a Spatio-Textual Skyline (STS) query, in which the skyline points are selected based on not only their distances to a set of query locations, but also on their relevance to a set of query keywords. STS is especially relevant to modern applications, where points of interest are typically augmented with textual descriptions. We investigate three models for integrating textual relevance into the spatial skyline. Among them, model STD, combining spatial distance with textual relevance in a derived dimensional space, is the most effective one. STD computes a skyline satisfying the intent of STS, and having a small and easy-to-interpret size. We propose an IR-tree based algorithm for computing STD-based skylines. The effectiveness of our STD model and the efficiency of the algorithm are evaluated experimentally. Finally, we propose the problem of top-k relevant Semantic Place retrieval (kSP) on spatial RDF data, which finds applications in domains such as journalism, health, business, and tourism. Traditionally, RDF data is accessed by structured query languages, e.g., SPARQL. This requires users to understand both the language and the RDF schema. Recent research on keyword search over RDF data aims at reducing such requirements, but still ignores the spatial dimension of RDF data. Our kSP seeks for RDF subgraphs, rooted at spatial entities close to the query location and containing a set of query keywords. Compared to existing work, kSP queries are independent to structured query languages and they are location-aware. We devise a basic method for processing kSP queries. Two pruning approaches and a preprocessing technique are proposed to further improve efficiency. Experiments on real datasets demonstrate the superior and robust performance of our proposals compared to the basic method. Subjects: Spatial analysis (Statistics)


Best Sellers


Product Details
  • ISBN-13: 9781361024928
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 160
  • Weight: 386 gr
  • ISBN-10: 1361024925
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Language: English
  • Spine Width: 9 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Queries and Analysis Tasks on Semantically Rich Spatial Data
Open Dissertation Press -
Queries and Analysis Tasks on Semantically Rich Spatial Data
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Queries and Analysis Tasks on Semantically Rich Spatial Data

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!