Statistical Inference for Markowitz Efficient Portfolios
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Statistical Inference for Markowitz Efficient Portfolios
Statistical Inference for Markowitz Efficient Portfolios

Statistical Inference for Markowitz Efficient Portfolios


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Statistical Inference for Markowitz Efficient Portfolios" by Yuanyuan, Zhu, 朱淵遠, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of the thesis entitled ST A TISTICAL INFERENCE FOR MARKOWITZ EFFICIENT POR TFOLIOS Submitted by ZHU, YUANYUAN for the degree of Do ctor of Philosophy at The University of Hong Kong in September 2015 Markowitz mean-v ariance mo del has been the foundation of modern portfolio theory . The Markowitz model attempts to maximize the portfolio expected return for a given level of portfolio risk, or equiv alently to minimize portfolio risk for a given level of expected return. Assuming multivariate normality of the asset returns, the optimal portfolio weights can be treated as a function of the unknown mean vector and covariance matrix. However it has b een criti- cized by many researchers the ineective and unstable performance of the op- timal portfolio under the model. This thesis intends to improve the Markowitz mean-variance model through two new methods. The rst method is to make use of generalized pivotal quantity (GPQ). The GPQ approach is widely used in constructing hypothesis tests and condence interv als. In this thesis, the GPQ approach is used to make statistical inference on the optimal portfolio weights. Dierent approaches are proposed for con- structing point estimator and simultaneous condence interv als for the optimal portfolio weights. Simulation studies has been conducted to compare the GPQ estimators with existing estimators based on Markowitz model, bootstrap andshrinkage methods. The results show that the GPQ based approach results in a smallest mean squared error for the point estimate of the portfolio weights in most cases and satisfactory coverage rate for the simultaneous condence interv als. F urthermore, an application on portfolio re-balancing problem is considered. Results show that the condence intervals help investors decide whether or not to update the p ortfolio weights so as to achieve a higher prot. This thesis not only focuses on the portfolio optimal weights, but also proposes a new estimator for the Sharpe ratio. Sharpe ratio serves as an important measure of the portfolio performance measure. Some researches have been done on the estimation of the distribution of Sharpe ratio when the number of assets is not too large but the sample size is big. This thesis makes use of GPQ to estimate the Sharpe ratio for high-dimensional data or small-sample-size data. The second method attempts to improve the estimation of the unknown cov ariance matrix. Note that the plug-in estimator for the optimal portfolio weights is biased and p erforms po orly due to the estimation error, especially in the cases of high dimensions. Instead of the sample covariance matrix, we consider the scaled sample cov ariance matrix to construct the new estimator for weights. The explicit formulae for both the mean and v ariance of the new estimator are derived. T wo approaches are prop osed to determine the optimal scale parameter of the covariance matrix estimator. Simulation studies show that the new estimators outperform the existing ones, especially when the number of assets is large. In addition, we illustrate the new estimators with an example from the US stock market. DOI: 10.5353/th_b5689290 Subjects: Portfolio management - Statistical methods


Best Sellers


Product Details
  • ISBN-13: 9781361023594
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 122
  • Weight: 576 gr
  • ISBN-10: 1361023597
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 8 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Statistical Inference for Markowitz Efficient Portfolios
Open Dissertation Press -
Statistical Inference for Markowitz Efficient Portfolios
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Statistical Inference for Markowitz Efficient Portfolios

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!