Buy Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems
Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems

Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Fast and Well-conditioned Integral Equation Solvers for Low-frequency Electromagnetic Problems" by Qin, Liu, 刘{274b4d}, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Inspired by the important low frequency applications, such as the integrate circuits, the nano electromagnetic compatibility and quantum optics, several aspects of the computational electromagnetic low-frequency problems in surface integral equation (SIE) are carefully investigated in this dissertation. Firstly a capacitive model is studied that the convergence of the matrix system is co-determined by both the condition of the matrix and the righthand-side excitation. In a current solution, the weighted contributions from different singular vectors are not only decided by the corresponding singular values but also the right-hand side. The convergence of the capacitive problems is guaranteed by the fact that the singular vectors corresponding to the small singular values are not excited under the delta-gap source. The dominant charge currents are enough to capture the capacitive physics. Detailed spectral analysis with right-hand side effect validates the proposed theory. Secondly, in order to overcome the low-frequency inaccuracy problem for open capacitive structures in CMP-EFIE, a perturbed CMP-EFIE is proposed to extract accurate high-order current at low frequencies. Further study of the capacitive problems in CMP-EFIE utilizes a simplified two-term system by removing the contribution from the hypersingular preconditioned term, which captures the correct physics without doing the perturbation steps. The afore-built right-hand side analysis theory is applied here to explain the stability and accuracy of the simplified CMP-EFIE system. Thirdly, a point testing system is constructed to eliminate the nontrivial nullspaces of the static MFIE systems by enforcing extra zero magnetic flux conditions at the testing points locations. The projection of the current solution onto the magnetostatic nullspaces is truncated accordingly, thus the system convergence can be much improved without losing any accuracy. Finally, the electromagnetic solution is obtained from a potential-based integral equation solver, capturing electrostatic physics from the scalar potential formulation and magnetostatic physics from the vector potential formulation. The combination of the two formulations reveals the correct solution and physics at low frequencies. And the equations, formulated with the potential quantities, make it possible to couple with quantum effects theories. The resulting system appears to be a symmetric saddle point problem, where the efficiency of the iterative solver can be well-solved by a typical appropriate constraint preconditioner. The stability and capability of the new system in solving different kinds of electromagnetic problems are validated over a wide range of frequency range. The research topics in this dissertation cover different aspects of low frequency integral equation solvers, aiming at fast, stable, wide-band and accurate integral algorithms. Subjects: Integral equationsElectromagnetic fields - Mathematical models


Best Sellers


Product Details
  • ISBN-13: 9781361013465
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • Weight: 381 gr
  • ISBN-10: 136101346X
  • Publisher Date: 26 Jan 2017
  • Binding: Paperback
  • Spine Width: 9 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems
Open Dissertation Press -
Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!