Mathematical Models for Biological Networks and Machine Learning with Applications
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Mathematical Models for Biological Networks and Machine Learning with Applications
Mathematical Models for Biological Networks and Machine Learning with Applications

Mathematical Models for Biological Networks and Machine Learning with Applications


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Mathematical Models for Biological Networks and Machine Learning With Applications" by Yushan, Qiu, 邱育珊, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Systems biology studies complex systems which involve a large number of interacting entities such that their dynamics follow systematical regulations for transition. To develop computational models becomes an urgent need for studying and manipulating biologically relevant systems. The properties and behaviors of complex biological systems can be analyzed and studied by using computational biological network models. In this thesis, construction and computation methods are proposed for studying biological networks. Modeling Genetic Regulatory Networks (GRNs) is an important topic in genomic research. A number of promising formalisms have been developed in capturing the behavior of gene regulations in biological systems. Boolean Network (BN) has received sustainable attentions. Furthermore, it is possible to control one or more genes in a network so as to avoid the network entering into undesired states. Many works have been done on the control policy for a single randomly generated BN, little light has been shed on the analysis of attractor control problem for multiple BNs. An efficient algorithm was developed to study the attractor control problem for multiple BNs. However, one should note that a BN is a deterministic model, a stochastic model is more preferable in practice. Probabilistic Boolean Network (PBN), was proposed to better describe the behavior of genetic process. A PBN can be considered as a Markov chain process and the construction of a PBN is an inverse problem which is computationally challenging. Given a positive stationary distribution, the problem of constructing a sparse PBN was discussed. For the related inverse problems, an efficient algorithm was developed based on entropy approach to estimate the model parameters. The metabolite biomarker discovery problem is a hot topic in bioinformatics. Biomarker identification plays a vital role in the study of biochemical reactions and signalling networks. The lack of essential metabolites may result in triggering human diseases. An effective computational approach is proposed to identify metabolic biomarkers by integrating available biomedical data and disease-specific gene expression data. Pancreatic cancer prediction problem is another hot topic. Pancreatic cancer is known to be difficult to diagnose in the early stage, and early research mainly focused on predicting the survival rate of pancreatic cancer patients. The correct prediction of various disease states can greatly benefit patients and also assist in design of effective and personalized therapeutics. The issue of how to integrating the available laboratory data with classification techniques is an important and challenging issue. An effective approach was suggested to construct a feature space which serves as a significant predictor for classification. Furthermore, a novel method for identifying the outliers was proposed for improving the classification performance. Using our preoperative clinical laboratory data and histologically confirmed pancreatic cancer samples, computational experiments are conducted successfully with the use of Support Vector Machine (SVM) to predict the status of patients. Subjects: Biomathematics Biology - Mathematical models


Best Sellers


Product Details
  • ISBN-13: 9781361012512
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 148
  • Weight: 635 gr
  • ISBN-10: 136101251X
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 10 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mathematical Models for Biological Networks and Machine Learning with Applications
Open Dissertation Press -
Mathematical Models for Biological Networks and Machine Learning with Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mathematical Models for Biological Networks and Machine Learning with Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!