Graphics Processing Unit-Based High Performance Computing in Radiation Therapy
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Biology, life sciences > Life sciences: general issues > Graphics Processing Unit-Based High Performance Computing in Radiation Therapy: (Series in Medical Physics and Biomedical Engineering)
Graphics Processing Unit-Based High Performance Computing in Radiation Therapy: (Series in Medical Physics and Biomedical Engineering)

Graphics Processing Unit-Based High Performance Computing in Radiation Therapy: (Series in Medical Physics and Biomedical Engineering)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Use the GPU Successfully in Your Radiotherapy Practice With its high processing power, cost-effectiveness, and easy deployment, access, and maintenance, the graphics processing unit (GPU) has increasingly been used to tackle problems in the medical physics field, ranging from computed tomography reconstruction to Monte Carlo radiation transport simulation. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy collects state-of-the-art research on GPU computing and its applications to medical physics problems in radiation therapy. Tackle Problems in Medical Imaging and Radiotherapy The book first offers an introduction to the GPU technology and its current applications in radiotherapy. Most of the remaining chapters discuss a specific application of a GPU in a key radiotherapy problem. These chapters summarize advances and present technical details and insightful discussions on the use of GPU in addressing the problems. The book also examines two real systems developed with GPU as a core component to accomplish important clinical tasks in modern radiotherapy. Translate Research Developments to Clinical Practice Written by a team of international experts in radiation oncology, biomedical imaging, computing, and physics, this book gets clinical and research physicists, graduate students, and other scientists up to date on the latest in GPU computing for radiotherapy. It encourages you to bring this novel technology to routine clinical radiotherapy practice.

Table of Contents:
Introduction. Digitally Reconstructed Radiographs. Analytic Cone-Beam CT Reconstructions. Iterative Cone-Beam CT Reconstruction on GPUs: A Computational Perspective. 4DCT and 4D Cone-Beam CT Reconstruction Using Temporal Regularizations. Multi-GPU Cone-Beam CT Reconstruction. Tumor Tracking and Real-Time Volumetric Imaging via One Cone-Beam CT Projection. GPU Denoising for Computed Tomography. GPU-Based Unimodal Deformable Image Registration in Radiation Therapy. Inter-Modality Deformable Registration. CT-to-Cone-Beam CT Deformable Registration. Reconstruction in Positron Emission Tomography. Implementation of Convolution Superposition Methods on a GPU. Photon and Proton Pencil Beam Dose Calculation. Photon Monte Carlo Dose Calculation. Monte Carlo Dose Calculations for Proton Therapy. Treatment Plan Optimization for Intensity-Modulated Radiation Therapy (IMRT). Treatment Plan Optimization for Volumetric-Modulated Arc Therapy (VMAT). Non-Voxel-Based Broad Beam Framework: A Summary. Gamma Index Calculations. SCORE System for Online Adaptive Radiotherapy. TARGET: A GPU-Based Patient-Specific Quality Assurance System for Radiation Therapy.

About the Author :
Dr. Xun Jia is an assistant professor and medical physicist in the Department of Radiation Oncology at the University of Texas Southwestern Medical Center. Dr. Jia has published over 60 peer-reviewed research articles and is a section editor of the Journal of Applied Clinical Medical Physics. He has conducted productive research on developing numerical algorithms and implementations for low-dose cone-beam CT reconstruction and Monte Carlo radiation transport simulation on the GPU platform. He earned his MS in mathematics and PhD in physics from the University of California, Los Angeles. Dr. Steve B. Jiang is the Barbara Crittenden Professor in cancer research, vice chair of the Radiation Oncology Department, and director of the Medical Physics and Engineering Division at the University of Texas Southwestern Medical Center. He is a fellow of the Institute of Physics and the American Association of Physicists in Medicine, serves on the editorial board of Physics in Medicine and Biology, and is an associate editor of Medical Physics. He has published more than 130 peer-reviewed papers on various areas of cancer radiotherapy. He received his PhD in medical physics from the Medical College of Ohio.

Review :
"The use of graphics processing units (GPU) is of significant interest to the medical physics community, due to its potential for dramatic advances in parallel computing. This is driven by the relatively low costs, high processing power and the ease of installing these cards in the clinic…This book brings together various research groups to review the state-of-the-art for GPUs in radiotherapy. The book initially starts with an overview of the current state of GPU technology, demonstrating the increase in performance over recent years and how the GPU is controlled by the CPU. It then systematically approaches various uses for the GPUs, from increasing the speed of filtered back projection reconstruction for CBCT to dose calculation via Monte Carlo or collapsed cone superposition methods. The book concludes with a look at more quality assurance uses, such as a chapter dedicated to GPU enhanced calculations of the gamma index. The editors achieve their aim of illustrating the vast utility for the GPUs. Each chapter of the book provides useful and generally easy to understand summaries of the main algorithms used in radiotherapy, such as the CBCT reconstruction algorithm, deformable registration algorithms and Monte Carlo methods. In all cases the authors demonstrate potential performance improvement, which in many cases leads one to wonder why these technologies aren’t already in use…Overall this a good book, which effectively demonstrates the uses and the associated performance benefits of using the GPU for radiotherapy, something that will no doubt become more important as we move into the era of adaptive radiotherapy where fast reconstruction, deformable registration and dose calculations will be essential." —Dr David Nash, Queen Alexandra Hospital, in RAD Magazine, October 2016 "Graphics Processing Unit-Based High Performance Computing in Radiation Therapy provides comprehensive and timely information on state-of-the-art GPU techniques and is certainly a must-have book for medical physicists, engineers, and students engaged in research and development involving high performance computing." —Lei Xing, Jacob Haimson Professor of Medical Physics, Stanford University "With adaptive radiation therapy and personalized treatments becoming more and more important in radiation therapy, improving computational efficiency is highly significant. This excellent book covers high-performance computing in a comprehensive manner. All aspects of cutting-edge computing in radiation therapy are discussed, namely, diagnostic imaging for treatment planning, on-line imaging, treatment plan optimization, as well as dose calculation for treatment planning. This book is a rich source of information for medical physicists interested in translational research aiming at improving clinical workflow and accuracy. At the same time, it is an excellent textbook for students in the field. Highly recommended!" —Harald Paganetti, PhD, FAAPM, Professor and Director of Physics Research, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School


Best Sellers


Product Details
  • ISBN-13: 9781351230537
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: CRC Press
  • Language: English
  • No of Pages: 396
  • ISBN-10: 1351230530
  • Publisher Date: 21 Sep 2018
  • Binding: Digital (delivered electronically)
  • No of Pages: 396
  • Series Title: Series in Medical Physics and Biomedical Engineering


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Graphics Processing Unit-Based High Performance Computing in Radiation Therapy: (Series in Medical Physics and Biomedical Engineering)
Taylor & Francis Ltd -
Graphics Processing Unit-Based High Performance Computing in Radiation Therapy: (Series in Medical Physics and Biomedical Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Graphics Processing Unit-Based High Performance Computing in Radiation Therapy: (Series in Medical Physics and Biomedical Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!