Buy Magnetic Domain Configurations and Huge Wall Resistivity in Half-Metallic Chromium Dioxide Nanostructures
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Magnetic Domain Configurations and Huge Wall Resistivity in Half-Metallic Chromium Dioxide Nanostructures
Magnetic Domain Configurations and Huge Wall Resistivity in Half-Metallic Chromium Dioxide Nanostructures

Magnetic Domain Configurations and Huge Wall Resistivity in Half-Metallic Chromium Dioxide Nanostructures


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

We have fabricated, studied and compared the electrical and magnetic behavior of several sub-micron-sized polycrystalline and epitaxial chromium dioxide (CrO2) nanostructures, grown using selective-area growth technique.Magnetic domain structures were studied by magnetic force microscopy, and in-plane, lamellar domain structure with fragmented walls aligned along the magnetic easy axis direction have been observed, indicating the existence of a large magnetocrystalline anisotropy in epitaxial CrO2 nanostructures. Low-temperature transport measurements on nanowires have shown that the dc resistivity of polycrystalline CrO2 wires is strongly dependent on the linewidth. Below a critical temperature, a transition from a positive to a negative temperature coefficient of resistivity have been observed, which we attribute to a competition between the scattering of the conduction electrons inside the grains and scattering across the grain boundaries. Using a model based on grain boundary scattering, we estimate a mean transmission probability through the grain boundaries to be on the order of 10-1 . Furthermore, magnetoresistance (MR) measurement indicates that the MR behavior of polycrystalline CrO2 wires is dominated by the shape anisotropy; however, for epitaxial CrO2 wires, both the shape and magnetocrystalline anisotropy play important roles, and the resulting MR properties are found to be closely related to the orientation of the wire axis. By studying the MR curves, we inferred the internal magnetic domain structures in various single crystal CrO2 wires and found that the spin-dependent transport is much stronger across a grain boundary than a magnetic domain wall.We have also studied the magnetotransport properties of CrO2 nanoscale continuous contacts. Manipulating the domain walls using a large dc current in the contact area yields a magnetoresistance of up to 25%, which is the largest ever seen in a single ferromagnetic film. The single domain-wall-resistance (DWR) is determined to be three orders of magnitude larger than that of conventional 3d ferromagnets, as a result of the material's half-metallicity. We have measured DWR and the spin-torque effect along different crystallographic axes and at varying temperatures. Finally, we present the results of a theoretical analysis of this system, based on its half-metallic character and on the intrinsic magnetic behavior of CrO2.


Best Sellers


Product Details
  • ISBN-13: 9781244767140
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 376 gr
  • ISBN-10: 124476714X
  • Publisher Date: 01 Oct 2011
  • Binding: Paperback
  • Spine Width: 12 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Magnetic Domain Configurations and Huge Wall Resistivity in Half-Metallic Chromium Dioxide Nanostructures
Proquest, Umi Dissertation Publishing -
Magnetic Domain Configurations and Huge Wall Resistivity in Half-Metallic Chromium Dioxide Nanostructures
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Magnetic Domain Configurations and Huge Wall Resistivity in Half-Metallic Chromium Dioxide Nanostructures

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!