Buy Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models.
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Art, Film & Photography > Architecture > Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models.
Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models.

Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models.


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation studies a general type of econometrc model characterized by moment conditions. Such a model, with different variations, has many important empirical applications in economics, biostatistics, and finance. The variations of the model have two dimensions: one is on the type of the moment conditions: either moment equality more inequality; the other is on the dimension of the structural parameter: either finite or infinite. As a result, the model contains most of the important econometric models. The key feature of the model that I am interested in is that the parameter is not completely identified. With limited knowledge of the underlying data distribution, it is only partially identified. I proceed with a Bayesian approach in this dissertation.Chapter 1. This chapter introduces the model and corresponding Bayesian methods in the literature, followed by detailed examples of the models to be considered in this dissertation. I present in detail some closely related recent literature, from both frequentist and Bayesian perspectives.Chapter 2. I study a type of moment condition that has been rapidly studied by econometricians in recent years: moment inequalities. Since the parameter of interest is allowed to be not point identified, the treatment is very flexible in dealing with incomplete data, such as missing data or censored data. I construct the posterior distribution of the structural parameter, and establish its large sample behaviors. Since in many applications, it is more straightforward to specify the moment inequalities than the distribution of the data generating process, hence instead of the true likelihood, the posterior density is derived based on the limited information likelihood, a moment condition based likelihood. It is shown that the posterior converges to zero exponentially fast outside any small neighborhood of the identified region. Inside the identified region, it is bounded below by a rate that is not exponentially small. The simulations provide evidence that the Bayesian approach has very attractive properties, in the sense that, with a proper choice of the prior, the posterior provides extra information about the true parameter inside the identified region.Chapter 3. There exists a moment and model selection problem in the moment inequality model. Here only a subset of the moment inequalities are to be used and the true parameter vector is assumed to follow a submodel allowing only some selected components to be nonzero (which can be, e.g., the regression coefficients of some selected explanatory variables). The moment inequalities are called compatible if fixing the dimension of the parameter vector and the parameter space, the identified region defined by these moment inequalities is not empty. I derive the posterior distribution of the moment inequality/parameter subspace combination, and show that the incompatible combinations have exponentially small posteriors. While the posteriors of compatible combinations are positive, they are sensitive to the researchers' a priori information of the model, which is the choice of the priors.Chapter 4. This chapter addresses the estimation of the semi-nonparametric conditional moment restricted model that involves a nonparametric structural function g0. The posterior distribution of the parameter of interest is derived based on the limited information likelihood. I focus on the frequentist properties of the posterior distribution, allowing the nonparametric structural function to be partially identified. It is shown that the posterior converges to any small neighborhood of the identified region. I then apply t


Best Sellers


Product Details
  • ISBN-13: 9781244638136
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 413 gr
  • ISBN-10: 1244638137
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 13 mm
  • Width: 203 mm

Related Categories

Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models.
Proquest, Umi Dissertation Publishing -
Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models.
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models.

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!