Buy On the Electronic and Magnetic Properties of Nanostructures
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Applied physics > Biophysics > On the Electronic and Magnetic Properties of Nanostructures
On the Electronic and Magnetic Properties of Nanostructures

On the Electronic and Magnetic Properties of Nanostructures


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

In this work we calculate the properties of several condensed matter systems using a combination of empirical model Hamiltonian approaches and methods from computational condensed matter physics such as density functional theory and numerical solutions of the mean-field Gross-Pitaevskii equations. This work has been organized into 7 chapters as follows. (1) In the first chapter we motivate the discussion for the rest of the thesis and discuss the theoretical ideas that underly the work. (2) In the second chapter we discuss the approaches and approximations such as density functional theory and many-body perturbation theory that have been used in this research to make the many-electron problem a tractable one. (3) In the third chapter we discuss the application of density functional theory calculations to the analysis of scanning tunneling microscope (STM) images of boron nitride nanotubes. It is found experimentally and confirmed theoretically that the electric field of the STM can be used to lower the gap of the nanotube in a controllable fashion and also the modify the shape of the electronic states on the nanotube. (4) In the fourth chapter we extend the idea of modifying electronic properties of boron nitride nanotubes with an STM and apply the principle to carbon nanotube bundles. In this study a combination of density functional theory and model Hamiltonian calculations is used to derive a theoretical prediction where the application of an electric field through an STM can drive a transition of a nanotube bundle from a semiconductor to an excitonic system where the ground state is populated with a density of excitons that is tunable by the electric field strength. (5) In the fifth chapter we discuss another class of nanosystems, and focus on molecules on metallic substrates. These systems have been the subject of a large number of studies because of their technological relevance to solar-cells and molecular electronic devices. In this chapter we develop a technique to determine the level alignment and gaps of a molecule in the neighborhood of a substrate. We then test our method by quantitatively comparing the results of this method applied to the C 60 molecule on Au and Ag substrates to experimental scanning tunneling spectroscopy results on these systems. (6) In chapter six we move our focus to bulk systems and use a combination of density functional theory and empirical pseudopotential methods to study the transport properties of Ge-Sn alloy systems. Using the empirical pseudopotential method we find a combination of strain and alloying that turns Ge-Sn into a direct gap semiconductor with low electron and hole masses. The low effective masses implies an increased carrier mobility for the alloy. Using density functional theory calculations we calculate the effect of alloy scattering from Sn in Ge and show that even after taking into account substitutional disorder from alloy scattering Ge-Sn alloys are expected to exhibit higher mobilities than Ge. (7) In the final chapter we apply the combination of a model Hamiltonian and a computational solution of mean field equations that we have been applying to solid state systems to understand and predict the properties of ultra-cold spinor Bose Eintein Condensates. In this study we study the effect of how dipole-dipole interactions between spin-1 Rubidium atoms can directly affect the dynamics of quantum noise induced domain formation and predict ways to directly observe the dipole-dipole interactions between 87Rb.


Best Sellers


Product Details
  • ISBN-13: 9781243991751
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 246 mm
  • Weight: 286 gr
  • ISBN-10: 1243991755
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 8 mm
  • Width: 189 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
On the Electronic and Magnetic Properties of Nanostructures
Proquest, Umi Dissertation Publishing -
On the Electronic and Magnetic Properties of Nanostructures
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

On the Electronic and Magnetic Properties of Nanostructures

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!