Buy Advanced Techniques for Semantic Concept Detection in General Videos
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Advanced Techniques for Semantic Concept Detection in General Videos
Advanced Techniques for Semantic Concept Detection in General Videos

Advanced Techniques for Semantic Concept Detection in General Videos


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The automatic analysis and indexing of multimedia content in general domains are important for a variety of multimedia applications. This thesis investigates the problem of semantic concept detection in general videos focusing on two advanced directions: multi-concept learning and multi-modality learning. Semantic concept detection refers to the task of assigning an input video sequence one or multiple labels indicating the presence of one or multiple semantic concepts in the video sequence. Much of the prior research work deals with the problem in au isolated manner, i.e., a binary classifier is constructed using feature vectors from the single visual modality to classify whether or not a video contains a specific concept. However, multimedia videos comprise of information from multiple modalities (both visual and audio). Each modality brings sonic information abort the other and their simultaneous processing can uncover relationships that are otherwise unavailable when considering the modalities separately. In addition, real-world semantic concepts do not occur in isolation. The context information is useful for enhancing detection of individual concepts. This thesis explores multi-concept learning and multi-modality learning to improve semantic concept detection in general videos, i.e., videos with general content and are captured in uncontrolled conditions. For multi-concept learning, we propose two methods with the frameworks of two-layer Context-Based Concept Fusion (CBCF) and single-layer multi-label classification, respectively. The first method represents the inter-conceptual relationships by a Conditional Random Field (CRF). The inputs of the CRF are initial detection probabilities from independent, concept detectors. Through inference with concept relations in the CRF we get updated concept detection probabilities as outputs. To avoid the difficulty of designing compatibility potentials in the CRF, a discriminative cost function aiming at class separation is directly-minimized. Also, we further extend this method to study an interesting "20 questions problem" for semantic concept detection, where user's interaction is incorporated to annotate a small number of key concepts for each data, which are then used to improve detection of the remaining concepts. To this end, an active CBCF approach is proposed that can choose the most informative concepts for the user to label. The second multi-concept learning method does not explicitly model concept relations but optimizes multi-label discrimination for all concepts over all training data through a single-layer joint boosting algorithm. By sharing "good' kernels among different concepts, accuracy of individual detectors can be improved; by joint learning of common detectors across different classes, required kernels and computational complexity for detecting individual concepts can be reduced. For multi-modality learning, we develop methods with two strategies: global fusion of features or models from multiple modalities, and construction of the local audio-visual atomic representation to enforce a moderate-level audio-visual synchronization. Two algorithms are developed for global multi-modality fusion, i.e., the late-fusion audio-visual boosted CRF and the early-fusion audio-visual joint boosting. The first method is an extension of the above two-layer CBCF multi-concept learning approach where the inputs of the CRF include independent concept detection probabilities obtained by using both visual and audio features, individually. The second method is an extension of the above single-layer multi-label classification approach; where both visual-based kernels and audio-based...


Best Sellers


Product Details
  • ISBN-13: 9781243858689
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 246 mm
  • Weight: 363 gr
  • ISBN-10: 1243858680
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 11 mm
  • Width: 189 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Advanced Techniques for Semantic Concept Detection in General Videos
Proquest, Umi Dissertation Publishing -
Advanced Techniques for Semantic Concept Detection in General Videos
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Advanced Techniques for Semantic Concept Detection in General Videos

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!