Buy Sequential Methods for Coupled Geomechanics and Multiphase Flow
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Sequential Methods for Coupled Geomechanics and Multiphase Flow
Sequential Methods for Coupled Geomechanics and Multiphase Flow

Sequential Methods for Coupled Geomechanics and Multiphase Flow


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

We study sequential solution methods for coupled multiphase flow and geomechanics. Sequential methods are desirable from a software development perspective. If the sequential solution strategies have stability and convergence properties that are close to those of the fully coupled approach, they can be very competitive for solving problems of practical interest. This is because of the high investment cost associated with developing unified flow-mechanics simulators and the high computational cost of the fully coupled (i.e., simultaneous solution) method. In these sequential-implicit solution strategies, the flow and mechanics problems are solved in sequence. Implicit time discretization is used when solving each of the flow and mechanics problems. The specific details of the form of the coupling scheme and how the two problems of flow and mechanics communicate play important roles in the viability of the coupling strategy. Here, four sequential coupling methods are considered in great detail: drained, undrained, fixed-strain, and fixed-stress splits. For space discretization, we employ a finite-volume method for flow and a finite-element approach for mechanics. This space discretization yields stable solutions at early time and allows for using existing flow and mechanical simulators. The drained and undrained splits solve the mechanical problem first, whereas the fixed-strain and fixed-stress splits solve the flow problem first. The stability and convergence properties for single-phase flow are analyzed for the four sequential-implicit methods. The Von Neumann and energy methods are used to analyze the stability of the linear and nonlinear problems, respectively. The derived stability estimates indicate that the drained and fixed-strain splits, which are the obvious splits, are, at best, conditionally stable. Moreover, their stability limit depends on the coupling strength only and is independent of time step size. On the other hand, the derived a-priori estimates indicates that the undrained and fixed-stress splits are unconditionally stable regardless of the coupling strength. All the results have been verified by performing numerical simulations for several test cases. To analyze the convergence rates of the various coupling algorithms, we use matrix and spectral methods. The drained and fixed-strain splits can suffer from non-convergence, even when they are stable. On the other hand, the undrained split yields first-order accuracy in time for a compressible fluid, but it exhibits slow convergence rates for high coupling strength and suffers from non-convergence for purely incompressible systems (solid grains and fluid). The fixed-stress split shows first-order accuracy in time regardless of the fluid type and coupling strength, and it yields a less stiff mechanical problem. Furthermore, the fixed-stress split requires only a few iterations to converge, even for very difficult problems with strong coupling. The stability and convergence behaviors of the four sequential methods for coupled multiphase flow and geomechanics are also analyzed using spectral and energy methods. The formulation for the flow part can be either fully implicit, or IMPES (IMplicit Pressure, Explicit Saturations). The derived a-priori estimates for the four sequential methods are similar to their single-phase counterparts. That is, the undrained and fixed-stress splits show unconditional stability, and the fixed-stress split exhibits faster convergence rates compared with the other sequential methods. Therefore, we strongly recommend the fixed-stress split with backward Euler time integration, a finite-volume scheme for flow, and a finite-clement...


Best Sellers


Product Details
  • ISBN-13: 9781243747839
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 246 mm
  • Weight: 481 gr
  • ISBN-10: 1243747838
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 14 mm
  • Width: 189 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Sequential Methods for Coupled Geomechanics and Multiphase Flow
Proquest, Umi Dissertation Publishing -
Sequential Methods for Coupled Geomechanics and Multiphase Flow
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Sequential Methods for Coupled Geomechanics and Multiphase Flow

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!