Buy Pose Estimation of Spherically Correlated Images Using Eigenspace Decomposition in Conjunction with Spectral Theory.
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Pose Estimation of Spherically Correlated Images Using Eigenspace Decomposition in Conjunction with Spectral Theory.
Pose Estimation of Spherically Correlated Images Using Eigenspace Decomposition in Conjunction with Spectral Theory.

Pose Estimation of Spherically Correlated Images Using Eigenspace Decomposition in Conjunction with Spectral Theory.


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Eigenspace decomposition represents one computationally efficient approach for dealing with object recognition and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The general idea behind eigenspace decomposition is that a large set of highly correlated images can be approximately represented by a much smaller subspace. Unfortunately, determining the dimension of the subspace, as well as computing the subspace itself is computationally prohibitive. To make matters worse, this on-line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general three-dimensional pose estimation or illumination invariant pose estimation). However, previous work has shown that for data correlated in one-dimension, Fourier analysis can help reduce the computational burden of this on-line expense. The first part of this dissertation extends some of the ideas developed for one-dimensionally correlated image data to data correlated in two- and three-dimensions making fully general three-dimensional pose estimation possible (assuming the object is illuminated from a single distant light source). The first step in this extension is to determine how to capture training images of the object by sampling the two-sphere (S2), and the rotation group (SO(3)) appropriately. Therefore, a thorough analysis of spherical tessellations is performed as applied to the problem of pose estimation. An algorithm is then developed for reducing the on-line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set. The algorithm is based on the fact that, similar to Fourier analysis on the line or circle, spherically correlated functions can be expanded into a finite series using spherical harmonics. It is then shown that the algorithm can be extended to higher dimensions by applying a proper rotation to each of the samples defined on the surface of the sphere. Using this sampling technique, a parameterization of SO(3) is obtained. It is shown that SO(3) correlated functions can be expanded into a finite series by applying a rotation to the set of spherical harmonics and expanding the function using Wigner- D matrices. Experimental results are presented to compare the proposed algorithm to the true eigenspace decomposition, as well as assess the computational savings. The second part of this dissertation deals with the problem of pose estimation when variations in illumination conditions exist. It is shown that the dimensionality of a set of images of an object under a wide range of illumination conditions and fixed pose can be significantly reduced by expanding the image data in a series of spherical harmonics. This expansion results in a reduced dimensional set of harmonic images." It is shown that the set of harmonic images are capable of recovering a significant amount of information from a set of images captured when both single and multiple illumination sources are present. An algorithm is then developed to estimate the eigenspace of a set of images that contain variation in both illumination and pose. The algorithm is based on projecting the set of harmonic images onto a set of Fourier harmonics by applying Chang's eigenspace decomposition algorithm. Finally, an analysis of eigenspace manifolds is presented when variations in both illumination and pose exist. A technique for illumination invariant pose estimation is developed based on eigenspace partitioning. Experimental results are presented to validate the proposed algorithm in terms of accuracy in estimating...


Best Sellers


Product Details
  • ISBN-13: 9781243630131
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 304 gr
  • ISBN-10: 1243630132
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 10 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Pose Estimation of Spherically Correlated Images Using Eigenspace Decomposition in Conjunction with Spectral Theory.
Proquest, Umi Dissertation Publishing -
Pose Estimation of Spherically Correlated Images Using Eigenspace Decomposition in Conjunction with Spectral Theory.
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Pose Estimation of Spherically Correlated Images Using Eigenspace Decomposition in Conjunction with Spectral Theory.

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!