Buy Random Sampling of Lattice Configurations Using Local Markov Chains
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Random Sampling of Lattice Configurations Using Local Markov Chains
Random Sampling of Lattice Configurations Using Local Markov Chains

Random Sampling of Lattice Configurations Using Local Markov Chains


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Algorithms based on Markov chains are ubiquitous across scientific disciplines, as they provide a method for extracting statistical information about large, complicated systems. Although these algorithms may be applied to arbitrary graphs, many physical applications are more naturally studied under the restriction to regular lattices. We study several local Markov chains on lattices, exploring how small changes to some parameters can greatly influence efficiency of the algorithms. We begin by examining a natural Markov Chain that arises in the context of "monotonic surfaces," where some point on a surface is sightly raised or lowered each step, but with a greater rate of raising than lowering. We show that this chain is rapidly mixing (converges quickly to the equilibrium) using a coupling argument; the novelty of our proof is that it requires defining an exponentially increasing distance function on pairs of surfaces, allowing us to derive near optimal results in many settings. Next, we present new methods for lower bounding the time local chains may take to converge to equilibrium. For many models that we study, there seems to be a phase transition as a parameter is changed, so that the chain is rapidly mixing above a critical point and slow mixing below it. Unfortunately, it is not always possible to make this intuition rigorous. We present the first proofs of slow mixing for three sampling problems motivated by statistical physics and nanotechnology: independent sets on the triangular lattice (the hard-core lattice gas model), weighted even orientations of the two-dimensional Cartesian lattice (the 8-vertex model), and non-saturated Ising (tile-based self-assembly). Previous proofs of slow mixing for other models have been based on contour arguments that allow us prove that a bottleneck in the state space constricts the mixing. The standard contour arguments do not seem to apply to these problems, so we modify this approach by introducing the notion of "fat contours" that can have nontrivial area. We use these to prove that the local chains defined for these models are slow mixing. Finally, we study another important issue that arises in the context of phase transitions in physical systems, namely how the boundary of a lattice can affect the efficiency of the Markov chain. We examine a local chain on the perfect and near-perfect matchings of the square-octagon lattice, and show for one boundary condition the chain will mix in polynomial time, while for another it will mix exponentially slowly. Strikingly, the two boundary conditions only differ at four vertices. These are the first rigorous proofs of such a phenomenon on lattice graphs.


Best Sellers


Product Details
  • ISBN-13: 9781243622860
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 209 gr
  • ISBN-10: 1243622865
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 6 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Random Sampling of Lattice Configurations Using Local Markov Chains
Proquest, Umi Dissertation Publishing -
Random Sampling of Lattice Configurations Using Local Markov Chains
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Random Sampling of Lattice Configurations Using Local Markov Chains

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!