Buy Energy Level Alignment in Metal/Oxide/Semiconductor and Organic Dye/Oxide Systems
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Applied physics > Biophysics > Energy Level Alignment in Metal/Oxide/Semiconductor and Organic Dye/Oxide Systems
Energy Level Alignment in Metal/Oxide/Semiconductor and Organic Dye/Oxide Systems

Energy Level Alignment in Metal/Oxide/Semiconductor and Organic Dye/Oxide Systems


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The alignment between the energy levels of the constituent materials of metal-oxide-semiconductor field effect transistors (MOSFET's) and dye sensitized solar cell (DSSC's) is a key property that is critical to the functions of these devices. We have measured the energy level alignment (band offsets) for metal/oxide/semiconductor (MOS) systems with high-kappa gate oxides and metal gates, and for organic dye/oxide systems. The combination of UV photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPS) in the same vacuum system was used to measure both the occupied and unoccupied density of states (DOS), respectively, of these materials systems. Additional soft X-ray photoemission spectroscopy (SXPS) measurements were made of both the valence bands and core levels of the high-kappa systems. The combination of the UPS, IPS and SXPS measurements were used to determine the band offsets between the high-kappa oxides and the Si substrates of thin film oxide/Si samples. To find the metal-oxide band offsets, thin metal layers were sequentially deposited on the oxide surfaces, followed by spectroscopic measurements. These measurements, combined with the measurements from the clean oxide surfaces, were used to find the metal-oxide band offsets. Metal-oxide band offset values were also calculated by the Interface Gap State (IGS) model. We compared the experimental metal-oxide conduction band offset (CBO) values with those calculated using the IGS model, and found that they tended to agree well for Ru/oxide and Ti/oxide systems, but not as well for Al/oxide systems. Through core level spectroscopy, we correlated observations of the composition of the metallic layers with the trends in agreement between the experimental and IGS CBO values, which led to the conclusion that the IGS model gives accurate values for the CBO for systems with chemically abrupt interfaces. Core level spectroscopy of the MOS systems also showed that Al and Ti overlayers reduced the interfacial SiO2 layers of HfO2/SiO2/Si and Hf0.7 Si0.3O2/SiO2/Si systems, while leaving the composition of high-kappa layers essentially unchanged. We also measured the energy level alignment for 3 organic dye/oxide systems, N3 dye on rutile TiO2(110), N3 dye on anatase TiO2 nanoparticle, and N3 dye on epitaxial ZnO(1120) film substrates. For the N3/TiO2(110) system, we found the the N3 highest occupied molecular orbital (HOMO) was 0.9 eV above the TiO2 valence band maximum (VBM) and the N3 lowest unoccupied molecular orbital (LUMO) was 0.5 eV above the TiO2 conduction band minimum (CBM). The energy level alignment for the N3/TiO 2 nanoparticle system was similar to that for N3/TiO2(110). The alignment between the N3 HOMO and oxide VBM for the N3/ZnO systems was found to be similar to those of the N3/TiO2 systems, whereas the alignment between the N3 LUMO and oxide CBM alignment was found to differ markedly between the N3/ZnO and the respective N3/TiO2 systems. The difference in the LUMO-CBM alignments is attributed to the different interactions between the N3 LUMO and the ZnO and TiO2 conduction bands. In addition, we measure the energy level alignment for a prototype dye molecule, isonicotinic acid (INA), on TiO2(110) and ZnO substrates. These measurements showed that the LUMO of INA is similar to that of N3, and that the HOMO of INA is much different than that of N3, in keeping with expectations based on the compositions and theoretical electronic structures of these molecules.


Best Sellers


Product Details
  • ISBN-13: 9781243603265
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 372 gr
  • ISBN-10: 1243603267
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 12 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Energy Level Alignment in Metal/Oxide/Semiconductor and Organic Dye/Oxide Systems
Proquest, Umi Dissertation Publishing -
Energy Level Alignment in Metal/Oxide/Semiconductor and Organic Dye/Oxide Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Energy Level Alignment in Metal/Oxide/Semiconductor and Organic Dye/Oxide Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!