Buy A Bayesian Network Model for Spatio-Temporal Event Surveillance .
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Health, Relationships and Personal development > Family and health > Coping with personal, social and health topics > Coping with / advice about ageing > A Bayesian Network Model for Spatio-Temporal Event Surveillance .
A Bayesian Network Model for Spatio-Temporal Event Surveillance .

A Bayesian Network Model for Spatio-Temporal Event Surveillance .


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Event surveillance involves analyzing a region in order to detect patterns that are indicative of some event of interest. An example is the monitoring of information about emergency department visits to detect a disease outbreak. Spatial event surveillance involves analyzing spatial patterns of evidence that are indicative of the event of interest. A special case of spatial event surveillance is spatial cluster detection, which searches for subregions in which the count of an event of interest is higher than expected. Temporal event surveillance involves monitoring for emerging temporal patterns. Spatio-temporal event surveillance involves joint spatial and temporal monitoring. When the events observed are of direct interest, then analyzing counts of those events is generally the preferred approach. However, in event surveillance we often only observe events that are indirectly related to the events of interest. For example, during an influenza outbreak, we may only have information about the chief complaints of patients who visited emergency departments. In this situation, a better surveillance approach may be to model the relationships among the events of interest and those observed. I developed a high-level Bayesian network architecture that represents a class of spatial event surveillance models, which I call BayesNet-S. I also developed an architecture that represents a class of temporal event surveillance models called BayesNet-T. These Bayesian network architectures are combined into a single architecture that represents a class of spatio-temporal models called BayesNet-ST. Using these architectures, it is often possible to construct a temporal, spatial, or spatio-temporal model from an existing Bayesian network event-surveillance model that is non-spatial and non-temporal. My general hypothesis is that when an existing model is extended to incorporate space and time, event surveillance will be improved. PANDA-CDCA (PC) (Cooper et al., 2007) is a non-temporal, non-spatial disease outbreak detection system. I extended PC both spatially and temporally. My specific hypothesis is that each of the spatial and temporal extensions of PC will perform outbreak detection better than does PC, and that the combined use of the spatial and temporal extensions will perform better than either extension alone. The experimental results obtained in this research support this hypothesis.


Best Sellers


Product Details
  • ISBN-13: 9781243600752
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 376 gr
  • ISBN-10: 1243600756
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 12 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A Bayesian Network Model for Spatio-Temporal Event Surveillance .
Proquest, Umi Dissertation Publishing -
A Bayesian Network Model for Spatio-Temporal Event Surveillance .
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Bayesian Network Model for Spatio-Temporal Event Surveillance .

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!